* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download option d sl: medicines and drugs
Survey
Document related concepts
Transcript
OPTION D SL: MEDICINES AND DRUGS D 1. Pharmaceutical products D 1.1. List the effects of medicines and drugs on the functioning of the body. D 1.2. Outline the stages involved in the research, development and testing of new pharmaceutical products. D 1.3. Describe the different methods of administering drugs. D 1.4. Discuss the terms therapeutic window, tolerance and side-effects. Effects of medicines and drugs on the functioning of the body Drugs are chemicals which effect how the human body functions, for better or for worse. A medicine is a beneficial drug as it effects the body functions for the better. Each medicine has one (or more) intended beneficial physiological effect(s) which is called its therapeutic effect. A medicine or drug is any chemical that does one or more of the following to the human body. alters the physiological state, including consciousness, activity level or coordination alters incoming sensory sensations alters mood or emotions Physiological = to do with the functions in living organisms; physiological effects = effect on the functioning of the living organism The types of medicines and drugs which we will study in this topic can be classified according to what they target in the human body: Medicines and drugs Analgesics, stimulants, depressants Antacids Antibacterials, antivirals Target/aim Nervous systems and brain; affect both sensory sensations and mood Target metabolic processes Assist body’s ability to fight diseases Stages in the development of a drug 1. Identify disease, could be new disease. 2. Identify a molecular target e.g. enzyme or gene which is necessary for disease to progress or a receptor. 3. Identify ‘lead’ molecule that can act on gene/enzyme in the disease organism or host or on the receptor – has pharmaceutical activity. Isolate the ‘lead’ molecule (e.g. from plants) or manufacture it synthetically. 4. Preclinical trials: testing of ‘lead molecule’ in laboratory, a. ‘in vitro’: the lead molecule is tested on animal/human cells and tissues which have been removed from the body and are kept in an artificial environment. b. ‘in vivo’: testing in live animals (usually 3 different species) to establish ED50 or LD50 which is the amount which kills 50 % of the population. 5. Clinical trials a. Testing of its effectiveness, its therapeutic window, tolerance and its side effects using the placebo effect. This is a ‘blind trial’ in which half of the people/patients involved are given the drug whilst the other half are given a similar substance that is not the drug (called ‘placebo’ but none of the patients (or even their administering doctors) know which half they are in. b. Structural modifications likely to be made to, for instance, improve effectiveness or reduce sideeffects. 6. Submission of reports on the drug and its trials to international or national regulatory bodies. IB option D SL 1 7. Monitoring of the drug after it has been launched; molecule might need further structural changes. Methods of administering drugs Oral: taken in by the mouth e.g. tablets, syrups, capsules. Parenteral – i.e. by injection, used when fast delivery is necessary. o intravenous: into a vein of the blood stream – used for immediate impacts as it is the fastest method; drug is immediately pumped around the body by the blood. o intramuscular i.e. into the muscles, e.g. many vaccines, local anaesthetics, usually used when a large dose needs to be administered. o subcutaneous: in the layer of the skin directly below the cutis (dermis and epidermis) e.g. dental injections, morphine, insulin. Slow. Inhalation: e.g. medication for respiratory conditions such as asthma. Rectal: inserted into the rectum e.g. treatment for digestive illnesses, drug absorbed into the blood stream. Skin patches: e.g. hormone treatments. Terms Dosing regime = the amount of drug used for each dose i.e. how much drug should be taken in and its frequency of administration e.g. three tablets every 4 hours. Therapeutic window = The therapeutic window is the range in amount over which a drug can be safely administered to a typical population. It is the range in concentration in the blood within which an administered drug must remain; The lowest level of concentration is the called the effective level (therapeutic level) or ED50; below this level the drug loses its therapeutic effect The highest level is the toxic or LD50 level (= the dose needed to kill 50 % of (animal) population) above which adverse side-effects can occur wide therapeutic window narrow therapeutic window low effective dose (ED50) and larger lethal dose (LD50) as a result there is a big difference between effective and lethal dose. small difference between effective and lethal dose, usually because lethal dose is small; overdose is a high risk. The therapeutic window depends on: The type of drug Age, sex and weight of the patient Tolerance Tolerance refers to the body’s reduced response to a drug i.e. its therapeutic effect is less than what it is intended, usually as a result of taking the drug over a long period of time. As a result more of the drug needs to be taken to achieve the same initial physiological effect with the danger of exceeding the lethal dose. Side-effects = Side-effects are physiological effects which are not intended and therefore undesired (intended = therapeutic effects); these could be: beneficial e.g. protect against heart disease. benign e.g. causing drowsiness, nausea constipation. adverse i.e. causing damage to other organs. IB option D SL 2 The extent of side effects determines who and when a medicine should be administered. Medicines with severe side-effects should only be administered by qualified staff in medical emergencies. Placebo effect The placebo effect occurs when a person experiences a positive therapeutic effect although a substance which is not a medicine (a ‘placebo’) has been administered; the human body is fooled into healing itself naturally. Placebo is used as a control to measure effectiveness of the drug which is the difference between the effects experienced by the patients who took the drug and those patients who did not. D 2. Antacids D 2.1 State and explain how excess acidity in the stomach can be reduced by the use of different bases. Acid indigestion (discomfort in stomach) and heartburn (acid rising into oesaphagus) are conditions which arise when excess hydrochloric acid is produced by the gastric glands in the walls of the stomach. The acid, which creates an acidic environment of pH 0.3 to 1.2, is needed to: kill any bacteria in the food ingested and provide the optimum pH environment for the digestive enzymes which act in the stomach. Action of antacids Antacids are substances (usually weak bases) which are used to neutralize excess hydrochloric acid in the stomach so the pH level returns to the desired level. Aluminium hydroxide, magnesium hydroxide and sodium hydrogencarbonate are commonly used as active ingredients in such antacids as they are weak bases. Sodium hydroxide or potassium hydroxide are not used as antacids because they are strong alkalis and are too corrosive to the body tissue. Equations Al(OH)3 (s) + 3HCl (aq) AlCl3 (aq) + 3H2O (l) Mg(OH)2 (s) + 2HCl (aq) MgCl2 (aq) + 2H2O (l) NaHCO3(s) + HCl (aq) NaCl (aq) + H2O (l) + CO2(g) Alginates Some antacids also contain compounds called ‘alginates’ which prevent heartburn by producing a neutralizing layer on top of stomach contents and preventing acid in the stomach from rising into the oesophagus and causing heartburn (inflammation and pain). Anti-foaming agents Antacids which use carbonates will also contain anti- foaming agents such as dimethicone which reduce the bloating of the stomach as a result of the carbon dioxide production. D 3. Analgesics D 3.1 Describe and explain the different ways that analgesics prevent pain. D 3.2 Describe the use of derivatives of salicylic acid as mild analgesics, and compare the advantages and disadvantages of using aspirin and paracetamol (acetaminophen). D 3.3 Compare the structures of morphine, codeine and diamorphine (heroin, a semi-synthetic opiate). D 3.3 Discuss the advantages and disadvantages of using morphine and its derivatives as strong analgesics . IB option D SL 3 Analgesics reduce pain. How do analgesics prevent pain? Mild analgesics, such as aspirin and paracetamol, function by stopping the transmission of pain from source to brain as they intercept the pain stimulus at the source. They do this by interfering with or suppress the production of substances, such as prostaglandins, that are produced by injured tissues and that cause pain, swelling or fever. Strong analgesics such as morphine and diamorphine (heroin) work by temporarily bonding to receptor sites to pain impulses in the brain or other parts of the central nervous system such as the spinal cord. This prevents the transmission of pain impulses i.e. blocking the signal without depressing the central nervous system. Structures of some analgesics Mild analgesics Functional groups present in some mild analgesics: aspirin phenyl/aromatic benzene ester carboxylic acid paracetamol phenyl/aromatic benzene hydroxyl amide carbonyl ibuprofen phenyl/aromatic benzene carboxylic acid Some mild analgesics such as aspirin are derivatives of salicylic acid that was used as an analgesic in the past but which was unpleasant to take and damaged the membranes in the mouth, gullet and stomach. The structure of salicylic acid is shown below. A derivative = a new compound obtained from another compound. Aspirin To convert salicylic acid into aspirin the hydrogen atom of the OH group is replaced by a COCH3 group to form an ester functional group which made the compound less irritating to the stomach and easier to take. Strong analgesics (see table 20 in data booklet Functional groups present in some strong analgesics: morphine aromatic benzene hydroxyl (2) ether; tertiary amine; IB option D SL diamorphine/heroin aromatic benzene tertiary amine alkene ester (2) codeine aromatic benzene hydroxyl/alcohol ether (2) alkene 4 double bond/alkene; ether tertiary amine All three compounds are derived from opium which is an extract from poppy seeds. Both codeine and diamorphine are derived from morphine and are called semi-synthetic opiate. An opiate is a chemical which has the same physiological effect as morphine. As the structures above show, heroin’s structure is only slightly different from morphine. Both the hydroxyl or alcohol groups in morphine have been replaced with ester groups. This is achieved by reacting the morphine with ethanoic acid; as a result an esterification occurs during which also water is produced. The amine in morphine, diamorphine and codeine is a tertiary amine as the nitrogen atom has three alkyl groups bonded onto it. Comparison of aspirin and paracetamol as mild analgesics analgesic aspirin paracetamol advantage reduces fever more effectively – antipyretic (=drug which reduces fever) beneficial side-effects: o preventing the recurrence of heart attacks and strokes o thins the blood o reduces blood clotting o also anti-inflammatory – reduces inflammation or swelling reduces fever - antipyretic very safe in the correct dose as it does not upset the stomach or cause bleeding suitable for children disadvantage ulceration stomach bleeding due to its acidic properties allergic reactions Reye’s syndrome in children (a potentially fatal liver and brain disorder) so not suitable for children can, in rare cases, cause blood disorders and kidney damage. easier to overdose and overdosage can lead to serious liver damage, brain damage and even death. not a good anti-inflammatory Advantages and disadvantages of using morphine and its derivatives advantage strong analgesics and therefore can relieve extreme pain wide therapeutic window relieves anxiety induces relaxation can be administered intravenously which results in faster distribution of drug IB option D SL disadvantage euphoria, lack of self-control even dangerous behaviour kidney failure. addiction or physical dependence which leads to withdrawal symptoms when drug is not taken e.g. restlessness, sweating, fever, cramping, … tolerance can become an issue with this type of drug as more of the drug needs to be taken to achieve the same effect; in order to achieve the desired effect heroin users may take doses which exceed the lethal dose Social: o heroin users are more likely to commit crimes to pay for gradually increasing doses of the drug o diversion of energy and money; loss of job o when administered intravenously can lead to transmission of 5 o dangerous infections e.g. AIDS. prostitution D 4. Depressant D 4.1 Describe the effects of depressants. D 4.2 Discuss the social and physiological effects of the use and abuse of ethanol. D 4.3 Describe and explain the techniques used for the detection of ethanol in the breath, the blood and urine. D 4.4. Describe the synergistic effects of ethanol with other drugs. D 4.5. Identify other commonly used depressants and describe their structures. Depressants are often described as antidepressants (act against depression) because they relieve the symptoms of (mental) depression by depressing (decreasing the activity of) the central nervous system. They calm and relax the nervous system as they slow down the action of the brain, heart and other organs. Effects of depressants dose low moderate high extremely high effect may exert little or no effect. may induce sedation, soothing, reduction of anxiety, relaxation,impaired judgement may induce sleep, unconsciousness, slurred speech, altered perception may cause organ failure, coma or death Social and physiological effect of the use and abuse of ethanol Social increased risk when driving or operating machinery involvement in violence or crime relationship problems taking time off work as a result of sickness or death associated with alcohol abuse loss of income hospital costs lower economical production Physiological Short term: reduces tension, anxiety and inhibitions impairs function of central nervous system dehydration high dose can cause vomiting, unconsciousness Long term: liver damage/cancer cirrhosis – liver disease increased blood pressure heart disease or stroke miscarriage and fetal abnormalities tolerance and physical dependence Synergetic effect of ethanol with other drugs Ethanol produces a synergic effect with other drugs i.e. their effect is enhanced in the presence of alcohol which can be dangerous e.g. with aspirin it can increase damage to stomach and cause bleeding. In the case of sleeping tablets and other sedatives it can cause coma or death. Techniques used for the detection of alcohol Using potassium dichromate Only used for detection in breath. Ethanol is sufficiently volatile to pass into the lungs from the bloodstream which is why it can be detected using a breathalyzer which contains potassium dichromate(VI). In a positive result (i.e. presence of alcohol) the potassium dichromate changes form orange to green when ethanol is present as the potassium dichromate is reduced and the ethanol oxidized to ethanoic acid. Equations: oxidation: C2H5OH + H2O → CH3COOH + 4H+ + 4e− IB option D SL 6 reduction: Cr2O7 2− + 14H+ + 6e− → 2Cr3+ +7H2O intoximeter chromatography Used for breath, blood and urine Infrared radiation is passed through breath, blood or urine. The C–H bond in ethanol causes radiation to be absorbed at a specific wavenumber (a wave property proportional to frequency/energy) which is 2950 cm-1. The intoximeter measures the amount of absorption at 2950 cm-1 which depends on the amount of ethanol in the breath i.e. the more ethanol there is present the more IR is absorbed. The amount of absorption or peak is compared against a standard (e.g. allowed amount of ethanol in the blood). Used for blood and urine samples. Ethanol is separated from the blood or urine using gas-liquid chromatography. Accurate; area under ethanol peak on chromatogram indicated amount of ethanol in blood or urine Other commonly used depressants (see table 20 in data booklet) depressant Fluoxetine hydrochloride (Prozac®) diazepam/Valium®; nitrazepam/Mogadon®; Structure: functional groups aromatic benzene, ether, fluorine, amine (ammonium structure), chloride ion amide aromatic benzene secondary amine chlorine atom amide aromatic benzene secondary amine NO2 D 5. Stimulants D 5.1 List the physiological effects of stimulants. D 5.2 Compare amphetamines and epinephrine (adrenaline). D 5.3 Discuss the short- and long-term effects of nicotine consumption. D 5.4 Describe the effects of caffeine and compare its structure with that of nicotine. Stimulants are drugs that act on the central nervous system as they increase the activity of the brain; they are the opposite to depressants. Examples of stimulants Caffeine, nicotine, amphetamines. The intention of these drugs is to have similar effects to adrenaline which is a natural stimulant which is released in times of stress e.g. pain, cold, fear. The effect of adrenaline are increased heart beat, blood pressure, increased blood flow to brain and muscles, increased air flow to lungs all resulting in an increased alertness to allow the organism to deal with the stress. Amphetamines have similar structures to adrenaline. Amphetamines mimic the effects of epinephrine or adrenaline which stimulates the sympathetic nervous system and they are therefore known as sympathomimetic drugs. Physiological effects of stimulants Short term increased heart rate, blood pressure, breathing rate, IB option D SL Long term increased risk of heart disease increased blood pressure 7 dilation of pupils constriction of arteries sweating increased alertness and concentration decreased appetite stimulating effects. coronary thrombosis stomach ulcers. tolerance: which leads to increased use as increased amounts needed to produce same effect; increasing amounts cause damage/death/overdose/lethal dose Differences between amphetamines and epinephrine amphetamines epinephrine Functional groups: aromatic benzene primary amine Functional groups: aromatic benzene secondary amine hydroxyl (3) Short and long term effects of nicotine consumption A nicotine molecule contains the following functional groups: a tertiary amine in one ring, ring structures with nitrogen atoms in them, and double bonds (alkene functional group). Label these groups on the structure below. Short term effects increased heart rate increased blood pressure reduced urine output increased concentration Long term effects increased risk of cancer or stroke heart disease / thrombosis stomach ulcers emphysema bronchitis shortage of breath coughing bad breath yellowing of teeth or fingers adverse effect on pregnancy addiction to tobacco reduction in capacity of blood to carry oxygen; withdrawal symptoms / weight gain (on quitting); Caffeine Caffeine is a stimulant. When consumed in large amounts it can cause anxiety, irritability and sleeplessness. It is a weak diuretic (=causes increase in urine output). Its structure is similar to nicotine as shown on the right; in this structure highlight in blue the functional groups which both nicotine and caffeine have: aromatic benzene and tertiary amine (caffeine has three of those) and in red the group which caffeine has but not nicotine i.e. the amide group. IB option D SL 8 D 6. Antibacterials D 6.1 Outline the historical development of penicillins. D 6.2 Explain how penicillins work and discuss the effects of modifying the side-chain. D 6.3 Discuss and explain the importance of patient compliance and the effect of penicillin overprescription . Antibacterials (or antibiotics) are drugs that kill or inhibit the growth of bacteria that cause infectious diseases. Penicillins are a group of compounds which kill harmful micro-organisms and are therefore called antibactertials. Historical development of penicillins Alexander Fleming, Howard Florey and Ernst Chain shared the Nobel Prize for “the discovery of penicillin and its curative effect in various infectious diseases”. Scientist Alexander Fleming Howard Florey and Ernst Chain Contribution to development of penicillin discovered that penicillin inhibited growth or killed bacteria overcame the problems associated with isolating and concentrating penicillin as Penicillin G showed that penicillin is harmless and effective on mice; first to use penicillin on a human; grew penicillin in large amounts; grew strains of penicillin in corn-steep liquor; How do penicillins work? Structure of the first penicillin to be used, penicillin G or C16H18O4N2S, is shown below. Label functional groups A and B and any other functional groups you recognize. Penicillins work by interfering with the enzymes that a bacteria needs to form a cell wall as the penicillin prevents the formation of cross-links within the cell wall. As a result the bacterial cell absorbs too much water and bursts as the result of increased osmotic pressure. Administering of penicillins There are two types of antibiotics broad-spectrum antibiotics are effective against a wide range of bacteria but can also kill useful bacteria. narrow-spectrum only attack a limited range of bacteria, usually administered when doctor has identified type of bacteria after taking samples of blood, urine, … IB option D SL 9 With some diseases, e.g. tuberculosis (TB) it is important to administer a “cocktail” of different antibacterials because bacteria which cause TB are usually extremely resistant to penicillins so a mixture of different antibacterials is used. Modifying side-chain of penicillin G to develop new sem-synthetic penicillins Modern or semi-synthetic penicillins, such as ampicillin, are molecules that have been modified from the penicillin G in which the side-chain (in the structure above the side chain is the CH2 and the benzene ring on the left of the molecule) has been replaced and now contains two functional groups: a benzene or C6H5 ring and an amine (-NH2) group. Such modifications to the side-chain to develop semi-synthetic penicillins brings two advantages: Increases resistance to penicillinase enzyme which is an enzyme produced by bacteria that can break down penicillin – this is how bacteria become resistant to antibiotics. Development of semisynthetic penicillins with different shapes, solubilities, side-chains and so on prevents penicillase form destroying penicillins. resistance to breakdown or deactivation 3by stomach acid (so can be taken orally). Patient compliance Refers to not completing their course of peniciliin or antibiotics this allows bacteria to develop resistance. Effect of overprescription of antibacterials The overuse of antibacterials has reduced their effectiveness as it leads to resistance by the bacteria to penicillin which makes penicillin less effective; bacteria produce penicillinase, an enzyme which destroys penicillin resistant bacteria reproduce and pass on their resistance to succeeding generations useful bacteria may be killed D 7. Antivirals D 7.1. State how viruses differ from bacteria. D 7.2 Describe the different ways in which antiviral drugs work. D 7.3 Discuss the difficulties associated with solving the AIDS problem. Difference between bacteria and viruses bacteria bacteria are self-reproducing i.e. by cell division bacteria are able to grow, feed and excrete bacteria contain various cell subunits or organelles such as cytoplasm and cell wall which all perform specific functions bacteria are (many times) larger than viruses bacteria have more complex DNA bacteria mutate/multiply slower than viruses; Viruses – need a host cell viruses are not self-reproducing as they need a host cell to multiply; viruses insert DNA into host cells viruses lack any metabolic functions so they do not grow, feed or excrete viruses consist only of genetic material and protective coating, no cell wall, no nucleus and no cytoplasm viruses are smaller than bacteria viruses have simpler DNA viruses mutate/multiply (much) faster than bacteria Ways in which antiviral drugs work IB option D SL 10 altering the host cell’s genetic material so that the virus cannot use it to multiply preventing the viruses from multiplying by blocking enzyme activity within the host cell. preventing viruses from entering host cell as it changes the cell membrane preventing the release of viruses after reproduction from the cell Viral infections are harder to treat than bacterial because viruses mutate much more quickly so: o they can adapt to drugs or o they can evade human immune system response bacteria are more complex and thus can be targeted in more ways - viruses lack subunits/functions which are normally targeted by antibacterials; bacteria can be killed or their actions reduced by simple chemical agents but viruses cannot be killed and must be targeted on genetic level different types of bacteria employ similar metabolic processes and thus can be targeted by common antibacterials whilst each kind of virus usually requires special drugs. The treatment of AIDS by antiviral drugs is problematic because HIV invades white blood cells or T4 cells. HIV viruses can mutate rapidly HIV viruses have similar metabolism to the metabolism of the host cell so any drug could also damage host cell high price of antiretroviral drugs socioeconomic cultural issues; IB option D SL 11