Download Copyright © by Holt, Rinehart and Winston

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Golden ratio wikipedia , lookup

Perspective (graphical) wikipedia , lookup

Technical drawing wikipedia , lookup

Multilateration wikipedia , lookup

Reuleaux triangle wikipedia , lookup

History of geometry wikipedia , lookup

Line (geometry) wikipedia , lookup

Rational trigonometry wikipedia , lookup

Trigonometric functions wikipedia , lookup

History of trigonometry wikipedia , lookup

Euler angles wikipedia , lookup

Pythagorean theorem wikipedia , lookup

Integer triangle wikipedia , lookup

Euclidean geometry wikipedia , lookup

Transcript
Name _______________________________________ Date __________________ Class __________________
2.2 Reteach
Angles Formed by Parallel Lines and Transversals
According to the Corresponding Angles Postulate, if two parallel lines are cut
by a transversal, then the pairs of corresponding angles are congruent.
Determine whether each pair of angles is congruent according to the
Corresponding Angles Postulate.
1. 1 and 2
________________________________________
2. 3 and 4
________________________________________
Find each angle measure.
3. m1
________________________________________
5. mABC
________________________________________
4. mHJK
________________________________________
6. mMPQ
________________________________________
© Houghton Mifflin Harcourt Publishing Company
Holt McDougal Analytic Geometry
Name _______________________________________ Date __________________ Class __________________
5.2 Reteach
Angles Formed by Parallel Lines and Transversals continued
If two parallel lines are cut by a transversal, then the following pairs of angles
are also congruent.
Angle Pairs
Hypothesis
Conclusion
alternate interior angles
2  3
6  7
alternate exterior angles
1  4
5  8
If two parallel lines are cut by
a transversal, then the pairs
of same-side interior angles
are supplementary.
m5m6180°
m1m2180°
Find each angle measure.
7. m3
________________________________________
9. mRST
________________________________________
11. mWXZ
________________________________________
8. m4
_________________________________________
10. mMNP
_________________________________________
12. mABC
_________________________________________
© Houghton Mifflin Harcourt Publishing Company
Holt McDougal Analytic Geometry
Name _______________________________________ Date ___________________ Class __________________
5.2 Reteach
Isosceles and Equilateral Triangles
Theorem
Examples
Isosceles Triangle Theorem
If two sides of a triangle are congruent, then the
angles opposite the sides are congruent.
If RT  RS, then /T > /S.
Converse of Isosceles Triangle Theorem
If two angles of a triangle are congruent, then
the sides opposite those angles are congruent.
If /N > /M, then LN  LM.
You can use these theorems to find angle measures in isosceles triangles.
Find mE in DEF.
mD  mE
5x8  (3x14)8
2x  14
x7
Isosc.  Thm.
Substitute the given values.
Subtract 3x from both sides.
Divide both sides by 2.
Thus mE  3(7)14  358.
Find each angle measure.
1. mC  _____________________
2. mQ  _____________________
3. mH  _____________________
4. mM  _____________________
© Houghton Mifflin Harcourt Publishing Company
Holt McDougal Analytic Geometry
Name _______________________________________ Date __________________ Class __________________
5.2 Reteach
Isosceles and Equilateral Triangles continued
Equilateral Triangle Corollary
If a triangle is equilateral, then it is equiangular.
(equilateral   equiangular )
Equiangular Triangle Corollary
If a triangle is equiangular, then it is equilateral.
(equiangular   equilateral )
If /A > /B > /C, then AB  BC  CA .
You can use these theorems to find values in equilateral triangles.
Find x in STV.
STV is equiangular.
Equilateral   equiangular 
(7x4)8  60
The measure of each  of an
equiangular  is 60.
7x  56
x8
Subtract 4 from both sides.
Divide both sides by 7.
Find each value.
5. n  _____________________
6. x  _____________________
7. VT  _____________________
8. MN  _____________________
© Houghton Mifflin Harcourt Publishing Company
Holt McDougal Analytic Geometry