Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2nd Quarter Notes 11/10/08 Review Quadratic Equation X²-8X+15 = 0 Standard Form: ax²+ bx + c Four ways to solve the quadratic equation 1. Graph it 2. Factor it. 3. Use the quadratic formula X = b b² - 4ac 2a 4. Completing the square. 1) Factoring Method: X² -8X + 15 (X-3)(X-5) X=3 X=5 2.) Quadratic formula b b² - 4ac X= 2a (8) 8² - 4(1 * 15) X= 2(1) X= X= b²- 4ac > 0 2 real solutions b²- 4ac < 0 1 solution b²- 4ac = 0 no real solution. 8 4 82 8 64 60 = 2 2 2 10 5 2 X= 6 3 2 Example 1: 2X² + 5X – 3 Factor What numbers multiplied =3 and added = 5 (2X -1)(X +3) The larger number must be – because middle value is negative. 2X – 1 =0 +1 +1 2X = 1 2 2 X = .5 X+3=0 - 3 -3 X = -3 3.) Completing the square 2X² - 6X + 1 = 0 -1 -1 Subtract 1 2X² - 6X = -1 2 2 Divide by 2 to get rid of the 2 in 2X² 3 9 b Use ² ² = 2.25 add to both sides. 2 4 2 3 X²- 3X + 2.25 = 2.25 - .5 Use for factors. 2 3 (X - ) ² = 1.75 2 X² - 3X = -.5 3 1.75 2 X = 1.5 + 1.32 = 2.82 X= X = 1.5 – 1.32 = .22 Example 2: Completing the square 4X²- 13X + 3 = 0 - 3 -3 4X²- 13X = -3 4 4 Subtract 3 from both sides. Divide both side s by 4 3.25 Use (b/2)² ² = 1.625 add to both 2 sides. X²- 3.25X + 1.625 = 1.625 - .75 (X – 1.625)² = .875 X – 1.625 = .935 X = 1.625 + .935 = 2.56 X = 1.625 - .935 = .69 X² - 3.25X = -.75 Quadratic Formula X= b b² - 4ac 2a 2X² - X + 5 a = 2 b = -1 c=5 Replace values of a,b,c in quadratic formula. X= (1) (1)² - 4(2)(5) 2(2) X= 1 1 40 4 X= 1 39 1 6.29i 4 4 X= 7.29i = 1.82i 4 Discriminant X= a=2, b=-1, c=5 5.29i 1.32i 4 b² - 4ac No real solutions b² - 4ac > o 2 real solutions b² - 4ac = 0 1 solution b² - 4ac < 0 no real solutions 11/13/08 Domain Range X Y 2 4 3 8 4 8 5 16 6 21 This is a function Which one is a function? 4X – 2Y² + 5 = 0 - 4X -5 -4X -2Y² = - 4X – 5 -2 -2 -2 Y²= 2X + 2.5 Y= Input Output X Y 2 3 3 9 3 12 4 15 5 18 Not a function – the X value repeats. Put into Y = form. Y 2 2 X 2.5 To see if a function give a value for X. Y = 2 X 2.5 2(9) 2.5 18 2.5 20.5 Y = 4.52 Example 2: 4X – 2X³+ 5 = 0 -4X - 5 -5 - 4X -2X³ = -4X -5 -2 -2 -2 X has 2 values so this is not a function. 3 X³= 2X – 2.5 Y 3 2 X 2.5 Y= 3 2(4) 2.5 3 8 2.5 3 10.5 Y = 2.18 One answer, this is a function. 11/14/08 Quadratic Function graph Graph is a parabola. Top graph – has a minimum. Vertex is (0,0) also y-intercept. Bottom graph is a maximum Vertex is (1.5, 0) X- intercept is 1.5. Standard Form for Quadratic Function. aX²+ bX + c Transformations – a,h,k,t,and s are constants (numbers). Transformations Polynomials x-intercept Forms a(X –h)²+k ax²+bx + c a(x-s)(x-t) Vertex (h,k) b b ,f( ) 2ac 2ac st st ,f( ) 2 2 b b 2 4ac 2a s and t x-intercept h y-interept k a ah²+ k C Transformation f(X) = 2(X-3)²-4 a = 2 h = 3 k = -4 Vertex: (3,-4) x-intercept: h k (4) 3 3 2 a 2 3+ 1.41 = 4.41 3 – 1.41 = 1.59 y-intercept: ah²+k = 2(3²) + -4 = 18 – 4 = 14 a●s●t Polynomial Form f(x) = X²+ 2X +3 Vertex: a = 1 b = 2 c =3 b 2 2 1 2ac 2(1) 2 f(-1) = (-1²)+2(-1)+3 f(-1)= 1 - 2+3= 2 Vertex: (-1,2) X – intercept: b b 2 4ac 2 22 4(1)(3) 2 4 12 2 8 = 2(1) 2 2 2a Can’t take √ of a negative number, no X-intercept. Y-intercept: C = 3 X-Intercept f(X)= a(x-s)(x-t) f(X) = 1 ( X 4)( X 2) 2 Vertex: 42 2 1 2 2 Vertex (1, 4.5) a= 1 2 s=4 t = -2 f(1) = -.5(1-4)(1+2)= -.5(-3)(3)= 4.5 X-intercept: (s and t) 4 and -2 Y-intercept: a(s)(t) = -.5(4)(-2)= 4 Changing Forms f(X)= .4(X -3)² +2 = .4 (X -3)(X -3) + 2 = .4 (X² -3X – 3X + 9) +2 = .4 (X²-6X +9) +2 = .4 X²-2.4X +3.6 +2 = .4 X²-2.4X + 5.6 f(X) = 3 X² -3.9X – 43.2 transformation now a polynomial Polynomial = 3X² 3.9 X 43.2 3 3 3 Factor out the 3 = 3(X²-1.3X – 14.4) = 3(X-4.5)(X+3.2) X-intercept form X-intercept Form Polynomial h(X) = -2 (X -4)(X +2) = -2(X² -4X +2X -8) = -2(X²-2X-8) = 2 X²+ 4X +16 f(X) = (-3X² + 4X) -1 Polynomial – Complete the square. = -3(X² - 1.33X + Factor out the 3 b 1.33 2 ( ) (.67 2 ) .44 2 2 =-3(X² - 1.33X + .44 - .44) – 1 = -3(X-.67)(X - .67) – 1 = -3(X-.67)²- 1 Transformation 11/18/08 Concave down Concave up Parametric Equation – comes in twos/ with t Y = f(X) X=t Y = f(t) X =2t +1 Y = t²-3 Calculator: Mode → Function → Par enter Y= put in equation X = 2t +1 Y = t²-3 Go back to Mode →Function -2X³+6X²-X + 3 3 is Y – intercept Points of inflection – where the shape starts to change. How to graph without a calculator. X = 2t +1 Y = t²- 3 Make a table: 14 T X=2t +1 Y=t²- 3 1 Y = 1²-3=-2 3,-2 X=2(1)+1=3 X,Y 2 X=2(2)+1=5 Y=2²-3=1 5,1 3 X=2(3)+1=7 Y=3²-3=6 7,6 4 X=2(4)+1=9 Y=4²-3=13 9,13 12 10 8 6 Series1 4 2 0 -2 0 5 10 -4 Pg. (10-14)(24-28)(62-67) 11/21/08 Solve the equations Ex. 1 5X²+7X-10 =0 +10 +10 5X²+7X =10 5 5 X²+ 1.4X =2 Complete the square take b/2 X²+1.4X+.49=2+.49 (X+.7)²= 2.49 X+.7 = 2.49 X+.7 = 1.57 X+.7 = -1.57 -.7 -.7 -.7 -.7 X = .87 X = -2.27 (1.4) 2 .7 2 .49 2 Example 2: b b 2 4ac X= 2a 12X²+6X+13=0 a=12, b=6, c=13 6 62 4(12)(13) 6 36 624 6 588 X= 2(12) 24 24 6 24.24 - 30.24i 1.26 i i = 24 24 NO Real Solution X= X= 18.24i .76 i 24 Operation of Functions Addition f(x) = 4X³+3X²+X f(x) + g(x) = h(x) g(x) = 2X²+3X-6 4X³+3X²+X 2X²+3X-6 h(x) 4X³+5X²+ 4X -6 h(x) = 4X³+5X²+ 4X -6 Subtraction l(x) = f(x) – g(x) 4X³+3X²+X (2X²+3X-6) 4X³+3X²+X - 2X²-3X+6 l(x) = 4X³+X²-2X+6 m(x) = g(x) – f(x) 2X²+3X-6 - (4X³+3X²+X) - 4X³-X²+2X – 6 Multiplication f(x)= X²+6 g(x) = 3X²+X-3 l(x) = f(x) ● g(x) (X²+6)( 3X²+X-3) = X²(3X²)+ X²(X)+ X²(-3)+6(3X²)+6(X)+6(-3) = 3X4+X³-3X²+18X²+6X-18 l(x) = 3X4+X³+15X²+6X-18 Division f ( x) X 2 6 1X 3 1 f(x) = X²+6 l(x) = X 3 g ( x) 3X 2 3 3 g(x) = 3X+2 Composite Function g ● f(x) = g(f(x)) f(x). f(x) = 4X² + 1 g(x) = Give a value for X then solve for 1 X 2 1st Take f(x) and use X=3 f(3) = 4(3²)+1 = 4(9) +1 = 37 g(x) = 1 X 2 g(37) = Now replace X in g(x) with 37. 1 1 .025 37 2 39 Division & Synthetic Division Divide 3 X 4 8 X 2 11X 1 by X-2 3X³+6X²+ 4X-3 X-2 3 X 4 0 X 3 8 X 2 11X 1 Step1: Divide Step2: Multiply(3X³)(X-2) -3X4 –(-6X³) Step3: Subtract 6X³-8X² Step4: Compare & bring down - 6X³-(-12X²) Begin again 4X² -11X -4X²-(-8X) -3X +1 - (-3X)-(6) -5 remainder Synthetic Division: Only with linear functions. 3 X 4 0 X 3 8 X 2 11X 1 Dividend X-2 Divisor Answer – Quotient Take constant from divisor, 2 and the numbers from the dividend. X³ X² X 2 3 0 -8 -11 1 Multiply first number by the constant. 3 6 6 x2 12 8 -6 4 -3 -5 remainder Answer 3X³+6X²+4X-3 r-5 x2 x2 Example 2: Divide X 5 5 X 4 6 X 3 X 2 4 X 29 by X+3 X4 1 -3 X³ X² 5 6 -3 -6 2 0 1 X -1 4 0 3 -1 7 -29 21 -8 Answer X 4 2 X 3 X 7 To check your answer: The Division Algorithm Dividend = Divisor ● Quotient + Remainder f(x) = h(x) ● g(x) + rx ( X 4 2 X 3 X 7 )(X+3) + 8 = X(X4)+X(2X³)+X(-X)+X(7) + 3(X4)+3(2X³)+3(-X)+3(7) X5+5X4+6X³-X²+4X+29 Remainders & Factors When the remainder is 0 the divisor and quotient are factors of the dividend. Divide 6X³ - 4X² +3X -2 by 2X²+1 3X -2 2X²+1 6X³ - 4X² +3X -2 - 6X³ - +3X -4X² -2 4X² +2 0 0 Answer: (2X²+1)(3X-2) no remainder The Remainder Theorem: If a polynomial f(x) is divided by X-C, then the remainder is f(C) constant. Divide f(x)= X 79 3 X 24 5 by X -1 Constant 1 179 3(124 ) 5 1 3 5 9 9 is the remainder. Factor Theorem: A polynomial f(x) has a linear factor X-a if and only if, f(a) = 0. X-3 is a factor of X³- 4X² +2X +3 a=3 3³- 4(3²) + 2(3) +3 = 27 -36 +6 +3 = 0 3] 1 1 -4 2 3 3 -3 -3 -1 -1 0 1X²- 1X -1 (X-3)( 1X²- 1X -1)