Download 2nd Quarter Notes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
2nd Quarter Notes
11/10/08
Review Quadratic Equation
X²-8X+15 = 0
Standard Form: ax²+ bx + c
Four ways to solve the quadratic equation
1. Graph it
2. Factor it.
3. Use the quadratic formula X =
 b  b² - 4ac
2a
4. Completing the square.
1) Factoring Method: X² -8X + 15
(X-3)(X-5)
X=3
X=5
2.) Quadratic formula
 b  b² - 4ac
X=
2a
 (8)   8² - 4(1 * 15)
X=
2(1)
X=
X=
b²- 4ac > 0
2 real solutions
b²- 4ac < 0
1 solution
b²- 4ac = 0
no real solution.
8 4 82
8  64  60

=
2
2
2
10
5
2
X=
6
3
2
Example 1: 2X² + 5X – 3
Factor What numbers multiplied =3 and added = 5
(2X -1)(X +3) The larger number must be – because middle value is negative.
2X – 1 =0
+1 +1
2X = 1
2
2
X = .5
X+3=0
- 3 -3
X = -3
3.) Completing the square
2X² - 6X + 1 = 0
-1 -1
Subtract 1
2X² - 6X = -1
2
2
Divide by 2 to get rid of the 2 in 2X²
3
9
b
Use   ² ²  = 2.25 add to both sides.
2
4
2
3
X²- 3X + 2.25 = 2.25 - .5 Use
for factors.
2
3
(X - ) ² = 1.75
2
X² - 3X = -.5
3
 1.75
2
X = 1.5 + 1.32 = 2.82
X=
X = 1.5 – 1.32 = .22
Example 2: Completing the square
4X²- 13X + 3 = 0
- 3 -3
4X²- 13X = -3
4
4
Subtract 3 from both sides.
Divide both side s by 4
  3.25 
Use (b/2)² 
 ² = 1.625 add to both
 2 
sides.
X²- 3.25X + 1.625 = 1.625 - .75
(X – 1.625)² =  .875
X – 1.625 =  .935
X = 1.625 + .935 = 2.56
X = 1.625 - .935 = .69
X² - 3.25X
= -.75
Quadratic Formula
X=
 b  b² - 4ac
2a
2X² - X + 5
a = 2 b = -1
c=5
Replace values of a,b,c in quadratic formula.
X=
 (1)  (1)² - 4(2)(5)
2(2)
X=
1  1  40
4
X=
1   39 1  6.29i

4
4
X=
7.29i
= 1.82i
4
Discriminant
X=
a=2, b=-1, c=5
5.29i
 1.32i
4
b² - 4ac
No real solutions
b² - 4ac > o 2 real solutions
b² - 4ac = 0 1 solution
b² - 4ac < 0 no real solutions
11/13/08
Domain Range
X
Y
2
4
3
8
4
8
5
16
6
21
This is a function
Which one is a function?
4X – 2Y² + 5 = 0
- 4X
-5
-4X
-2Y²
= - 4X – 5
-2
-2 -2
Y²= 2X + 2.5
Y=
Input Output
X
Y
2
3
3
9
3
12
4
15
5
18
Not a function – the X value repeats.
Put into Y = form.
Y 2  2 X  2.5 To see if a function give a value for X.
Y = 2 X  2.5
2(9)  2.5  18  2.5  20.5
Y =  4.52
Example 2:
4X – 2X³+ 5 = 0
-4X
- 5 -5 - 4X
-2X³
= -4X -5
-2
-2 -2
X has 2 values so this is not a function.
3
X³= 2X – 2.5
Y  3 2 X  2.5
Y=
3
2(4)  2.5  3 8  2.5  3 10.5
Y = 2.18
One answer, this is a function.
11/14/08
Quadratic Function graph
Graph is a parabola.
Top graph – has a minimum.
Vertex is (0,0) also y-intercept.
Bottom graph is a maximum
Vertex is (1.5, 0) X- intercept is 1.5.
Standard Form for Quadratic Function.
aX²+ bX + c
Transformations – a,h,k,t,and s are constants (numbers).
Transformations Polynomials
x-intercept
Forms
a(X –h)²+k
ax²+bx + c
a(x-s)(x-t)
Vertex
(h,k)
b
b
,f(
)
2ac
2ac
st
st
,f(
)
2
2
 b  b 2  4ac
2a
s and t
x-intercept
h
y-interept
k
a
ah²+ k
C
Transformation
f(X) = 2(X-3)²-4
a = 2 h = 3 k = -4
Vertex: (3,-4)
x-intercept: h 
k
 (4)
 3
 3 2
a
2
3+ 1.41 = 4.41
3 – 1.41 = 1.59
y-intercept: ah²+k = 2(3²) + -4 = 18 – 4 = 14
a●s●t
Polynomial Form
f(x) = X²+ 2X +3
Vertex:
a = 1 b = 2 c =3
b
2 2


 1
2ac 2(1)
2
f(-1) = (-1²)+2(-1)+3
f(-1)= 1 - 2+3= 2
Vertex: (-1,2)
X – intercept:
 b  b 2  4ac  2  22  4(1)(3)  2  4  12  2   8
=


2(1)
2
2
2a
Can’t take √ of a negative number, no X-intercept.
Y-intercept: C = 3
X-Intercept
f(X)= a(x-s)(x-t)
f(X) =
1
( X  4)( X  2)
2
Vertex:
42 2
 1
2
2
Vertex (1, 4.5)
a=
1
2
s=4
t = -2
f(1) = -.5(1-4)(1+2)= -.5(-3)(3)= 4.5
X-intercept: (s and t) 4 and -2
Y-intercept: a(s)(t) = -.5(4)(-2)= 4
Changing Forms
f(X)= .4(X -3)² +2
= .4 (X -3)(X -3) + 2
= .4 (X² -3X – 3X + 9) +2
= .4 (X²-6X +9) +2
= .4 X²-2.4X +3.6 +2
= .4 X²-2.4X + 5.6
f(X) = 3 X² -3.9X – 43.2
transformation
now a polynomial
Polynomial
=
3X² 3.9 X 43.2


3
3
3
Factor out the 3
= 3(X²-1.3X – 14.4)
= 3(X-4.5)(X+3.2) X-intercept form
X-intercept Form
Polynomial
h(X) = -2 (X -4)(X +2)
= -2(X² -4X +2X -8)
= -2(X²-2X-8) = 2 X²+ 4X +16
f(X) = (-3X² + 4X) -1 Polynomial – Complete the square.
= -3(X² - 1.33X +
Factor out the 3
b
1.33 2
(
)  (.67 2 )  .44
2
2
=-3(X² - 1.33X + .44 - .44) – 1
= -3(X-.67)(X - .67) – 1
= -3(X-.67)²- 1
Transformation
11/18/08
Concave down
Concave up
Parametric Equation – comes in twos/ with t
Y = f(X)
X=t
Y = f(t)
X =2t +1 Y = t²-3
Calculator: Mode → Function → Par enter
Y= put in equation
X = 2t +1
Y = t²-3
Go back to Mode →Function
-2X³+6X²-X + 3 3 is Y – intercept
Points of inflection – where the shape starts to change.
How to graph without a calculator.
X = 2t +1
Y = t²- 3
Make a table:
14
T X=2t +1
Y=t²- 3
1
Y = 1²-3=-2 3,-2
X=2(1)+1=3
X,Y
2
X=2(2)+1=5 Y=2²-3=1
5,1
3
X=2(3)+1=7 Y=3²-3=6
7,6
4
X=2(4)+1=9 Y=4²-3=13
9,13
12
10
8
6
Series1
4
2
0
-2 0
5
10
-4
Pg. (10-14)(24-28)(62-67)
11/21/08
Solve the equations
Ex. 1 5X²+7X-10 =0
+10 +10
5X²+7X =10
5
5
X²+ 1.4X
=2
Complete the square take b/2
X²+1.4X+.49=2+.49
(X+.7)²= 2.49
X+.7 =  2.49
X+.7 = 1.57
X+.7 = -1.57
-.7 -.7
-.7 -.7
X = .87
X = -2.27
(1.4) 2
 .7 2  .49
2
Example 2:
 b  b 2  4ac
X=
2a
12X²+6X+13=0
a=12, b=6, c=13
 6  62  4(12)(13)  6  36  624  6   588
X=


2(12)
24
24
 6  24.24
- 30.24i
 1.26 i
i =
24
24
NO Real Solution
X=
X=
18.24i
 .76 i
24
Operation of Functions
Addition
f(x) = 4X³+3X²+X
f(x) + g(x) = h(x)
g(x) = 2X²+3X-6
4X³+3X²+X
2X²+3X-6
h(x) 4X³+5X²+ 4X -6
h(x) = 4X³+5X²+ 4X -6
Subtraction
l(x) = f(x) – g(x)
4X³+3X²+X
(2X²+3X-6)
4X³+3X²+X
- 2X²-3X+6
l(x) = 4X³+X²-2X+6
m(x) = g(x) – f(x)
2X²+3X-6
- (4X³+3X²+X)
- 4X³-X²+2X – 6
Multiplication
f(x)= X²+6
g(x) = 3X²+X-3
l(x) = f(x) ● g(x)
(X²+6)( 3X²+X-3) = X²(3X²)+ X²(X)+ X²(-3)+6(3X²)+6(X)+6(-3)
= 3X4+X³-3X²+18X²+6X-18
l(x) = 3X4+X³+15X²+6X-18
Division
f ( x)
X 2  6 1X  3 1
f(x) = X²+6 l(x) =

 X 3
g ( x)
3X  2
3
3
g(x) = 3X+2
Composite Function
g ● f(x) = g(f(x))
f(x).
f(x) = 4X² + 1
g(x) =
Give a value for X then solve for
1
X 2
1st Take f(x) and use X=3
f(3) = 4(3²)+1 = 4(9) +1 = 37
g(x) =
1
X 2
g(37) =
Now replace X in g(x) with 37.
1
1

 .025
37  2 39
Division & Synthetic Division
Divide
3 X 4  8 X 2  11X  1 by X-2
3X³+6X²+ 4X-3
X-2 3 X 4  0 X 3  8 X 2  11X  1
Step1: Divide
Step2: Multiply(3X³)(X-2)
-3X4 –(-6X³)
Step3: Subtract
6X³-8X²
Step4: Compare & bring down
- 6X³-(-12X²)
Begin again
4X² -11X
-4X²-(-8X)
-3X +1
- (-3X)-(6)
-5 remainder
Synthetic Division: Only with linear functions.
3 X 4  0 X 3  8 X 2  11X  1 Dividend
X-2 Divisor
Answer – Quotient
Take constant from divisor, 2 and the numbers from the dividend.
X³ X² X
2
3 0 -8 -11 1
Multiply first number by the constant.
3
6
6
x2
12
8 -6
4 -3 -5 remainder Answer 3X³+6X²+4X-3 r-5
x2 x2
Example 2:
Divide X 5  5 X 4  6 X 3  X 2  4 X  29 by X+3
X4
1
-3
X³ X²
5
6
-3 -6
2
0
1
X
-1 4
0 3
-1 7
-29
21
-8
Answer X 4  2 X 3  X  7
To check your answer:
The Division Algorithm
Dividend = Divisor ● Quotient + Remainder
f(x) = h(x) ● g(x) + rx
( X 4  2 X 3  X  7 )(X+3) + 8 = X(X4)+X(2X³)+X(-X)+X(7)
+ 3(X4)+3(2X³)+3(-X)+3(7)
X5+5X4+6X³-X²+4X+29
Remainders & Factors
When the remainder is 0 the divisor and quotient are factors of the
dividend.
Divide
6X³ - 4X² +3X -2 by 2X²+1
3X
-2
2X²+1 6X³ - 4X² +3X -2
- 6X³
- +3X
-4X²
-2
4X²
+2
0
0
Answer: (2X²+1)(3X-2)
no remainder
The Remainder Theorem: If a polynomial f(x) is divided by X-C, then
the remainder is f(C) constant.
Divide f(x)=
X 79  3 X 24  5 by X -1 Constant 1
179  3(124 )  5  1  3  5  9 9 is the remainder.
Factor Theorem: A polynomial f(x) has a linear factor X-a if and only
if, f(a) = 0.
X-3 is a factor of X³- 4X² +2X +3
a=3
3³- 4(3²) + 2(3) +3 = 27 -36 +6 +3 = 0
3]
1
1
-4
2
3
3 -3
-3
-1
-1
0
1X²- 1X -1
(X-3)( 1X²- 1X -1)
Related documents