Download Skill Review

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
A Brief Review of Math Skills
Topic
Absolute Value
Adding signed
numbers with the
same sign
Adding several
signed numbers
with opposite signs
Adding several
signed numbers
Procedure
The absolute value of a number is the
distance between that number and zero
on the number line. The absolute
value of any number will be positive
or zero.
If the signs are the same, add the
absolute values of the numbers. Use
the common sign in the answer
If the signs are different:
1. Find the difference of the larger
absolute value and the smaller.
2. Give the answer the sign of the
number having the larger absolute
value.
When adding several signed numbers,
separate them into two groups by
common sign, Find the sum of all the
positives and all the negatives.
Combine these two subtotals by the
method described above.
Examples
2  2
3 3 0 0
1.38  1.38
5 5

6 6
 3   7  10
 7    13  6
 7    13  6
 7   6  8   11   13  22
7
6
11
8
13
22
31
36
 31   36   5
Subtracting signed
numbers
Multiplying and
dividing signed
numbers
Change the sign of the second number
and then add
1. If the two numbers have the same
sign, multiply (or divide). The result
is always positive.
2. If the two numbers have different
signs, multiply (or divide) as indicated.
The result is always negative
(3)  (13)  (3)  (13)  10
Exponent form
The base tells you what number is
being multiplied. The exponent tells
you how many times this number is
used as a factor.
25  2  2  2  2  2  32
Raising a negative
number to a power
When the base is negative, the result is
positive for even exponents, and
negative for odd exponents.
Removing
Parentheses
Use the distributive law to remove
parentheses:
a(b + c) = ab + ac
Combine terms that have identical
letters and exponents
Combining like
terms
Revised November 13, 2006
 5  3  15
 36    4   9
 28   7   4
 6  3  18
43  4  4  4  64
 3 
4
  3 3 3 3  81
 3  27
4
 2   16
3  5x  2  3  5x   3  2 
3
 15 x  6
7 x  3x  4 y  2 x 2  8 x  9 y 
2
9 x 2  11x  5 y
Order of operations
Substituting into
variable expressions
Remember the proper order of
operations:
1. Operations inside Parentheses () and
brackets []
2. Exponents
3. Multiplication and Division from
left to right.
4. Addition and Subtraction from left
to right.
1. Replace each letter by the numerical
value given.
2. Follow the order of operations in
evaluating the expression
3  5  4   22 3   9  23  
2
 3  9   4 3   9  8  
 3  81  4  3  1
2
 3  81  12  3
 243  12  231
Evaluate 2 x 3  3xy  4 y 2 for x  3, y  2
2  3  3  3 2   4  2 
3
2
 2  27   3  3 2   4  4 
 54  18  16
Using formulas
1. Replace each variable in the
formula by the given values.
2. Evaluate the expression.
3. Label units carefully
 56
Find the area of a circle with radius 4 feet .
Use A   r 2 with  approximatley 3.14.
A   3.14  4 feet 
2
 (3.14)(16 feet 2 )
 50.24 feet 2
The area of the circle is approximately
50.24 square feet.
Removing grouping
symbols
1. Remove innermost grouping
symbols first.
2. Continue until all grouping
symbols are removed.
3. Combine like elements.

5 3 x  2  4  3  x  1 

 5  3 x  2  4  3 x  3
 5  3x  8  6 x  6 
15 x  40  30 x  30
 15 x  10
2
Solving equations
without parentheses
or fractions
1. On each side of the equation,
Solve for X:
collect like terms if possible.
5 x  2  2 x  10  4 x  3
2. Add or subtract terms on both sides
7 x  2  7  4 x
of the equation in order to get all
terms with the variable on one side of
7 x  (4 x)  2  7  4 x  (4 x)
the equation.
3 x  2  7
3. Add or subtract a value on both
3 x  2  (2)  7  (2)
sides of the equation to get all terms
not containing the variable on the
3 x  9
other side of the equation.
3 x 9
4. Divide both sides of the equations

by the coefficient of the variable.
3
3
5. If possible, simplify solution.
x  3
6. Check your solution by substituting Check: Is x  3 a solution
the obtained value into the original
5  3  2  2  3  10  4(3)  3
equation.
15  2  6  10  (12)  3
13  6  22  3
19  19
Solving equations
with parentheses
and/or fractions
1. Remove any parentheses.
2. Simplify, if possible.
3. If fractions exist, multiply all terms
on both sides by the lowest common
denominator of all the fractions.
4. Now follow the remaining steps of
solving an equation without
parentheses or fractions.
1
 6 y  4   48
4
3
15 y  20  y  1  48
2
3
15 y  20  y  47
2
3 
2 15 y   2  20   2  y   2  47 
2 
30 y  40  3 y  94
5 3 y  4 
30 y  3 y  40  3 y  3 y  94
27 y  40  94
27 y  40  40  94  40
27 y  54
27 y 54

27
27
y  2
*Remember to check your solution (see
previous example)
3
Solving formulas
Solving Inequalities
1. Remove any parentheses and
simplify if possible.
2. If fractions exist, multiply all terms
on both sides by the LCD, which may
be a variable.
3. Add or subtract terms on both sides
of the equation in order to get all
terms containing the desired variable
on one side of the equation and all
other terms on the opposite side of the
equation.
4. Divide both sides of the equation by
the coefficient of the desired variable.
This decision may involve other
variables.
5. Simplify, if possible.
6. Check your solution by substituting
the obtained expression into the
original equation.
1. Follow the steps for solving a firstdegree equation up until the division
step.
2. If you divide both sides of the
inequality by a positive number, the
direction of the inequality is not
reversed.
3. If you divide both sides of the
inequality by a negative number, the
direction of the inequality is reversed.
Solve for z:
1
 hx  hz 
3
1
1
B  hx  hz
3
3
1  1 
3( B )  3  hx   3  hz 
3  3 
3B  hx  hz
B
3B  hx  hx  hx  hz
3B  hx  hz
3B  hx
z
h
1
 3 x  2   5  5 x  3
2
3
x  1  8  5 x
2
3 
2  x   2 1  2  8   2  5 x 
2 
3 x  2  16  10 x
3 x  10 x  2  16  10 x  10 x
 7 x  2  16
 7 x  2  2  16  2
 7 x  14
Multiplying
monomials
(xa )(xb) = xa+b
1. Multiply the numerical
coefficients.
2. Add the exponents of a given base.
Dividing monomials
xa xa-b If a > b
xb = _1
xb-a If b > a
1. Divide or reduce the fraction
created by the quotient of the
numerical coefficients.
2. Subtract the exponents of a given
base.
7 x 14

7
7
x2
312  315  327
x3  x 4  x 7
 3x  6 x   18 x
 2ab   4a b   8a b
2
3
2 3
5
3 4
16 x 7
 2 x4
3
8x
5 x3
1
 2
5
25 x
5x
5 7
12 x y
2 x 2

18 x3 y10
3 y3
4
Exponent of zero
Raising a power to a
power
x 0  1 if x  0
x 
a b
 xy 
a
3x 0 y  3 y
 xa y a
 2 x2  8x6
 3   9
y
 y 
1. Raise the numerical coefficient to
the power outside the parentheses.
2. Multiply the exponent outside the
parentheses by the exponent inside the
parentheses.
If x  0 and y  0, then
1
xn
1
 xn
m
x
xm y n
y n xm
Scientific notation
x6
1
x6
x 
9
xn 
w0  1
 x ab
x
x9

 
y9
 y
 y  0
Negative exponents
50  1
A number is written in scientific
notation if it is the form: a 10n
where 1  a  10 and n is an integer.
9 3
 3x 
2 3
 x 27
 27 x 6
3
 3x y 
4
 5ab 
5 4
3
 81x16 y 20
 125a 3b3
Write with positive exponents
1
x6
1
w12
z5
3

w

w3
z 5
w12
3
 2 x 2   23 x 6  231x6  81x6
34 
1
1

4
3
81
x 6 
128  1.28 102
2,568, 000  2.568 106
13, 200, 000, 000  1.32 1010
0.16  1.6 101
0.00079  7.9 104
Add polynomials
Subtracting
polynomials
To add two polynomials, we add the
respective like term
0.0000034  3.4 106
 7 x3  2 x2  5   x3  3x2  x 
To subtract polynomials, change all
signs of the second polynomial and
add the result to the first polynomial:
5x  6   3x  2
  5 x  6   3x  2
Use the distributive property:
 8x2  8
5 x  2 x  3x 2  4 
 a   b    a    b 
Multiplying a
monomial by a
polynomials
a  b  c   ab  ac
 b  c  a  ba  ca
  6 x3  5 x 2  x  5
2
2
2
2
 10 x3  15 x 2  20 x
6x
3
 5 xy  2 y 2   3xy 
 18 x 4 y  15 x 2 y 2  6 xy 3
5
Multiplying two
binomials
1. The product of the sum and
difference of the same two values
yields the difference of their squares.
 a  b  a  b   a2  b2
2. The square of a binomial yields a
trinomial: the square of the first, plus
twice the product of first and second,
plus the square of the second.
 3x  7 y  3x  7 y   9 x 2  49 y 2
2
 3x  7 y   9 x 2  42 xy  49 y 2
2
 3x  7 y   9 x 2  42 xy  49 y 2
 3x  5 2 x  7 
 6 x 2  21x  10 x  35
 6 x 2  11x  35
 a  b   a 2  2ab  b2
2
 a  b   a 2  2ab  b2
2
Multiplying two
polynomials
3. Use FOIL for other binomial
multiplication. The middle terms can
often be combined, giving a trinomial
answer.
To multiply two polynomials,
multiply each term of one by each
term of the other. This method is
similar to the multiplication of manydigit numbers.
Vertical method:
 3x
2

 7 x  4
 3x  1
 3x 2  7 x  4
9 x 3  21x 2  12 x
9 x 3  24 x 2  19 x  4
Horizontal method:
 5 x  2   2 x 2  x  3
 10 x3  5 x 2  15 x  4 x 2  2 x  6
Multiply three or
more polynomials
1. Multiply any two polynomials.
2. Multiply the result by any
remaining polynomials.
 10 x3  x 2  13 x  6
 2x 1 x  3 x  4
  2 x 2  5 x  3  x  4 
 8 x 2  20 x  12    2 x3  5 x 2  3x 
 2 x3  3x 2  23x  12
Dividing a
polynomial by a
monomial
1. Divide each term of the polynomial
by the monomial.
2. When dividing variables use the
property:
xa
 x a b
b
x
15 x
Divide:
3
 20 x  30 x    5 x 
2
15 x 3 20 x 2 30 x



5x
5x
5x
2
 3x  4 x  6
6
Dividing a
polynomial by a
binomial
1. Place the terms of the polynomial
and binomial in the descending order.
Insert a 0 for any missing term.
2. Divide the first term of the
polynomial by the first term of the
binomial.
3. Multiply the partial answer by the
binomial, and subtract the results from
the first two terms of the polynomial.
Bring down the next term to obtain a
new polynomial.
4. Divide the new polynomial by the
binomial using the process described
in step 2.
5. Continue dividing, multiplying,
and subtracting until the reminder is at
a lower power than the variable in the
first term of the binomial divisor.
8x
Divide:
3
 13x  2 x 2  7    4 x  1
We rearrange the terms:
2x2  x  3
4 x  1 8 x 3  2 x 2  13 x  7
8 x3  2 x 2
4 x 2  13 x
4x2  x
 12 x  7
12 x  3
4
The answer is :
2x2  x  3 
4
4x 1
7