• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
An Introduction to Quantum Computing
An Introduction to Quantum Computing

SCHRÖDINGER EQUATION FOR A PARTICLE ON A CURVED SPACE AND SUPERINTEGRABILITY
SCHRÖDINGER EQUATION FOR A PARTICLE ON A CURVED SPACE AND SUPERINTEGRABILITY

... of the linear momentum operator. Plane waves are therefore simultaneous eigenfunctions of energy and linear momentum. As soon as the problem is thought of in a space with curvature, the analysis becomes much more complicated [11, 14, 15]. First of all, the canonical momenta do not in general coincid ...
Probing contextuality with superconducting quantum circuits Talk 27. Oct. 2015  ABSTRACT:
Probing contextuality with superconducting quantum circuits Talk 27. Oct. 2015 ABSTRACT:

... Contextuality is one of the most fundamental property which distinguishes quantum mechanics from classical theory. It has also been suggested to be the 'magical' resource responsible for an exponential speedup of a quantum computer. We will provide the first experimental evidence of this resource fo ...
1.1 What has to be explained by Quantum mechanics?
1.1 What has to be explained by Quantum mechanics?

... • Band structure: Why is E(k) an adequate description of the energy of a crystal • Transport of electrons: from occupied state ⇒ free state Only reasonable for Fermions following the Pauli principle! But ”free” and ”occupied” states within a band, sizes of band gaps, etc. classify metals, semiconduc ...
Prof. Bertrand Reulet, Université de Sherbrooke, Canada  Talk: 23. May 2014
Prof. Bertrand Reulet, Université de Sherbrooke, Canada Talk: 23. May 2014

... > fluctuations of the electrical current, a phenomenon commonly referred > to as "noise". In classical physics, the variance of these > fluctuations is simply proportional to the temperature. In a tiny > device placed at very low temperature, electrons can no longer be > considered as classical part ...
e-the-quantum-numberssv-2
e-the-quantum-numberssv-2

... Name:______________________________________________________ Date:___________________________________________ Blk:_____ ...
Quantum Problems 1. Consider a quantum system whose state at
Quantum Problems 1. Consider a quantum system whose state at

Prof. Dr. Klaus Hornberger Universitat Duisburg
Prof. Dr. Klaus Hornberger Universitat Duisburg

... Does the quantum superposition principle hold on mesoscopic or even macroscopic scales? The tremendous success of quantum theory notwithstanding, this question remains unsettled to date. I will discuss experimental tests of the quantum superposition principle, such as matter wave interferometry with ...
HWU4-21 QUESTION: The principal quantum number, n, describes
HWU4-21 QUESTION: The principal quantum number, n, describes

... The principal quantum number, n, describes the energy level of a particular orbital as a function of the distance from the center of the nucleus. Additional quantum numbers exist to quantify the other characteristics of the electron. The angular momentum quantum number (ℓ), the magnetic quantum numb ...
Some Families of Probability Distributions Within Quantum Theory
Some Families of Probability Distributions Within Quantum Theory

... Some basics of quantum theory are presented including the way an experiment is modeled. Then states, observables, expected values, spectral measure, and probabilities are introduced. An example of spin measurement is discussed in the context of Stern Gerlach experiments. In order to describe an exam ...
Recap of Lectures 9-11
Recap of Lectures 9-11

File
File

... Physical state of a quantum system is described by a column vector (t ) whose components are probability amplitudes of states in which system can be found. No. of states are equal to the dimension of Hilbert space, which can be finite/infinite. ...
Quantum mechanical model
Quantum mechanical model

... ...
< 1 ... 370 371 372 373 374

Quantum state

  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report