solutions
... Using our formula for force on a wire segment F = Il × B, and recalling that torque is defined τ = r × F, we can use the right hand rule to find the direction of motion. The torque from the portion of the coil lying on the y axis is zero, because the lever arm is zero (r in the torque equation). The ...
... Using our formula for force on a wire segment F = Il × B, and recalling that torque is defined τ = r × F, we can use the right hand rule to find the direction of motion. The torque from the portion of the coil lying on the y axis is zero, because the lever arm is zero (r in the torque equation). The ...
Millikan Oil Drop Introduction Towards the end of the 19th century a
... basic layout is illustrated in figure 1. He observed tiny oil drops (created in a fine mist using a device much like a perfume sprayer) with small amounts of excess charge as they fell and rose in a controllable uniform electric field. Using rise and fall times, as well as some basic mechanics, he w ...
... basic layout is illustrated in figure 1. He observed tiny oil drops (created in a fine mist using a device much like a perfume sprayer) with small amounts of excess charge as they fell and rose in a controllable uniform electric field. Using rise and fall times, as well as some basic mechanics, he w ...
SS Review for Final
... with the same string force. One arrow is fired at an angle of 60° with the horizontal, and the other is fired at an angle of 45° with the horizontal. Compared to the arrow fired at 60°, the arrow fired at 45° has a (A) longer flight time and longer horizontal range (B) longer flight time and shorter ...
... with the same string force. One arrow is fired at an angle of 60° with the horizontal, and the other is fired at an angle of 45° with the horizontal. Compared to the arrow fired at 60°, the arrow fired at 45° has a (A) longer flight time and longer horizontal range (B) longer flight time and shorter ...
12.3 Powerpoint
... account for changes in the motion of objects. Using what you have learned, explain what happens in the following situation. An ice skater holding a basketball is standing on the surface of a frozen pond. The skater throws the ball forward. At the same time, the skater slides on the ice in the opposi ...
... account for changes in the motion of objects. Using what you have learned, explain what happens in the following situation. An ice skater holding a basketball is standing on the surface of a frozen pond. The skater throws the ball forward. At the same time, the skater slides on the ice in the opposi ...
Weightlessness
Weightlessness, or an absence of 'weight', is an absence of stress and strain resulting from externally applied mechanical contact-forces, typically normal forces from floors, seats, beds, scales, and the like. Counterintuitively, a uniform gravitational field does not by itself cause stress or strain, and a body in free fall in such an environment experiences no g-force acceleration and feels weightless. This is also termed ""zero-g"" where the term is more correctly understood as meaning ""zero g-force.""When bodies are acted upon by non-gravitational forces, as in a centrifuge, a rotating space station, or within a space ship with rockets firing, a sensation of weight is produced, as the contact forces from the moving structure act to overcome the body's inertia. In such cases, a sensation of weight, in the sense of a state of stress can occur, even if the gravitational field was zero. In such cases, g-forces are felt, and bodies are not weightless.When the gravitational field is non-uniform, a body in free fall suffers tidal effects and is not stress-free. Near a black hole, such tidal effects can be very strong. In the case of the Earth, the effects are minor, especially on objects of relatively small dimension (such as the human body or a spacecraft) and the overall sensation of weightlessness in these cases is preserved. This condition is known as microgravity and it prevails in orbiting spacecraft.