Le mouvement et les types de forces
... k) Because of the gravitational force of the Earth, a ________________________ body accelerates at 9.8 m/s2. This acceleration is the ________________________ for all such bodies on Earth, regardless of their masses. The intensity of the gravitational field decreases as you ________________________ ...
... k) Because of the gravitational force of the Earth, a ________________________ body accelerates at 9.8 m/s2. This acceleration is the ________________________ for all such bodies on Earth, regardless of their masses. The intensity of the gravitational field decreases as you ________________________ ...
1. An 80 kg water skier is being pulled by a boat with a force of 220
... 1. An 80 kg water skier is being pulled by a boat with a force of 220 N causing the skier to accelerate at 1.8 m/s2. Find the drag force on the skier. 2. A 2000 kg car is slowed down uniformly from 20 m/s to 5 m/s in 4 seconds. Determine the average net force on the car during this time, and how far ...
... 1. An 80 kg water skier is being pulled by a boat with a force of 220 N causing the skier to accelerate at 1.8 m/s2. Find the drag force on the skier. 2. A 2000 kg car is slowed down uniformly from 20 m/s to 5 m/s in 4 seconds. Determine the average net force on the car during this time, and how far ...
02-Forces shorter
... Force =Constant (k) x Extension Example a/. A mass of 3kg causes an extension of 0.3m what is the spring constant? 3x9.8 = k x 0.3 K=98N/m B/. What is the extension if 40N is put on the same spring? Force = Spring Constant x Extension 40 = 98 x s S = 40/98 = 0.41 m ...
... Force =Constant (k) x Extension Example a/. A mass of 3kg causes an extension of 0.3m what is the spring constant? 3x9.8 = k x 0.3 K=98N/m B/. What is the extension if 40N is put on the same spring? Force = Spring Constant x Extension 40 = 98 x s S = 40/98 = 0.41 m ...
PHYSICS 151 – Notes for Online Lecture #11
... A free-body diagram is a way to represent all of the forces that act on a body. A free-body diagram makes solving Newton’s second law for a given situation easier, because you’re modeling the system as something simpler than it actually is. To draw a free-body diagram: 1. Draw a separate diagram for ...
... A free-body diagram is a way to represent all of the forces that act on a body. A free-body diagram makes solving Newton’s second law for a given situation easier, because you’re modeling the system as something simpler than it actually is. To draw a free-body diagram: 1. Draw a separate diagram for ...
Weightlessness
Weightlessness, or an absence of 'weight', is an absence of stress and strain resulting from externally applied mechanical contact-forces, typically normal forces from floors, seats, beds, scales, and the like. Counterintuitively, a uniform gravitational field does not by itself cause stress or strain, and a body in free fall in such an environment experiences no g-force acceleration and feels weightless. This is also termed ""zero-g"" where the term is more correctly understood as meaning ""zero g-force.""When bodies are acted upon by non-gravitational forces, as in a centrifuge, a rotating space station, or within a space ship with rockets firing, a sensation of weight is produced, as the contact forces from the moving structure act to overcome the body's inertia. In such cases, a sensation of weight, in the sense of a state of stress can occur, even if the gravitational field was zero. In such cases, g-forces are felt, and bodies are not weightless.When the gravitational field is non-uniform, a body in free fall suffers tidal effects and is not stress-free. Near a black hole, such tidal effects can be very strong. In the case of the Earth, the effects are minor, especially on objects of relatively small dimension (such as the human body or a spacecraft) and the overall sensation of weightlessness in these cases is preserved. This condition is known as microgravity and it prevails in orbiting spacecraft.