• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Department of Physics and Mathematics
Department of Physics and Mathematics

Math 131The Fundamental Theorem of Calculus (Part 2)
Math 131The Fundamental Theorem of Calculus (Part 2)

Euler - Abdulla Eid
Euler - Abdulla Eid

1.2 Elementary functions and graph
1.2 Elementary functions and graph

1 Maximum and Minimum Values
1 Maximum and Minimum Values

... Find the absolute maximum an minimum values of f (x) = x3 − 12x + 1 on the interval [1, 4] Example 1.9 (Instructor). Sketch a graph of a function f that is continuous on [1, 5] and has all of the following properties • An absolute minimum at 2 • An absolute maximum at 3 • A local minimum at 4 Exampl ...
Lecture2.pdf
Lecture2.pdf

Calculus of Several Variables
Calculus of Several Variables

AP® Calculus AB 2011 Scoring Guidelines Form B
AP® Calculus AB 2011 Scoring Guidelines Form B

Calculus I Homework: Linear Approximation and Differentials Page
Calculus I Homework: Linear Approximation and Differentials Page

A Summary of Differential Calculus
A Summary of Differential Calculus

TRANSFORMS AND MOMENT GENERATING FUNCTIONS There
TRANSFORMS AND MOMENT GENERATING FUNCTIONS There

... and using this together with the power series for the indicator itself we can calculate the moment generating function for any unknown whose pdf is a straight line segment supported on [a, b]. We can also break up the transform process over disjoint intervals. Thus, if f and g are functions with dom ...
PDF (Chapter 7)
PDF (Chapter 7)

... If n = - 2, - 3, - 4, . . . , a and b must have the same sign. If n is not an integer, a and b must be positive (or zero if > 0). ...
Lecture #33, 34: The Characteristic Function for a Diffusion
Lecture #33, 34: The Characteristic Function for a Diffusion

Chapter 4 Study Guide (Exam 3)
Chapter 4 Study Guide (Exam 3)

Document
Document

AP Calculus Multiple Choice: BC Edition – Solutions
AP Calculus Multiple Choice: BC Edition – Solutions

The Analytic Continuation of the Ackermann Function
The Analytic Continuation of the Ackermann Function

R`(x)
R`(x)

Section 1.2 Domain and Range
Section 1.2 Domain and Range

f(x)
f(x)

MAMS MATH
MAMS MATH

4.2 Mean Value Theorem
4.2 Mean Value Theorem

7.4 - The Fundamental Theorem of Calculus
7.4 - The Fundamental Theorem of Calculus

3.3 Derivatives of Logarithmic and Exponential Functions (10/21
3.3 Derivatives of Logarithmic and Exponential Functions (10/21

... 3.3 Derivatives of Logarithmic and Exponential Functions In this section we will be using the product rule, quotient rule, and  chain rule to differentiate functions, but our functions will involve  exponentials and logarithms, so we need to discuss their derivatives.   The proofs of these can be fo ...
q-Series 1 History and q-Integers Michael Griffith
q-Series 1 History and q-Integers Michael Griffith

< 1 ... 8 9 10 11 12 13 14 15 16 ... 27 >

Multiple integral

  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report