
Sample Task Alignment
... Evaluate the relative efficiency of different representations and solution methods of a problem G.PS.10a The equations of two lines are 2x + 5y = 3 and 5x = 2y – 7. Determine whether these lines are parallel, perpendicular, or neither and explain how you determined your answer. Compare your answer w ...
... Evaluate the relative efficiency of different representations and solution methods of a problem G.PS.10a The equations of two lines are 2x + 5y = 3 and 5x = 2y – 7. Determine whether these lines are parallel, perpendicular, or neither and explain how you determined your answer. Compare your answer w ...
CIRCLES 10.1 Circles and Circumference CIRCLE
... The endpoints of a chord are also endpoints of an arc. Arcs and chords have a special relationship. In a circle or congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent. In a circle or congruent circles, two chords are congruent if and only if they a ...
... The endpoints of a chord are also endpoints of an arc. Arcs and chords have a special relationship. In a circle or congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent. In a circle or congruent circles, two chords are congruent if and only if they a ...
Supp A - Penn Math
... iii) Count the units used It is easy to visualize a large number of classroom activities that could be carried out to illustrate the weighing process, using only a simple balance scale. How many paper clips does a pencil weigh? How many pencils does a notebook weigh? How many marbles does a glass of ...
... iii) Count the units used It is easy to visualize a large number of classroom activities that could be carried out to illustrate the weighing process, using only a simple balance scale. How many paper clips does a pencil weigh? How many pencils does a notebook weigh? How many marbles does a glass of ...
Euclidean geometry

Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.For more than two thousand years, the adjective ""Euclidean"" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only where the gravitational field is weak.Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates.