
Section 7.1
... Assume to the contrary that AB and DC are not parallel. Draw a line trough A and B and draw a line trough D and C. These lines are not parallel so they cross at one point. Call this point E. Notice that <)AEC is greater than 0. Since <)CAB = <)DCA, <)CAE + <)ACE = 180 degrees. Hence <)AEC + <)CAE + ...
... Assume to the contrary that AB and DC are not parallel. Draw a line trough A and B and draw a line trough D and C. These lines are not parallel so they cross at one point. Call this point E. Notice that <)AEC is greater than 0. Since <)CAB = <)DCA, <)CAE + <)ACE = 180 degrees. Hence <)AEC + <)CAE + ...
Week 10 Math Vocabulary
... 3. odds – the ratio of the number of ways an event can occur to the number of ways the event can not occur 4. skew lines – two lines in different planes that do not intersect ...
... 3. odds – the ratio of the number of ways an event can occur to the number of ways the event can not occur 4. skew lines – two lines in different planes that do not intersect ...
Student exploration: triangle angle sum answers
... interested in learning. Welcome to Geometry. This course will make math come alive with its many intriguing examples of geometry in the world around you, from baseball to theater lighting to. 4. Answers will vary. Possible answers: LESSON 2.4 • Deductive Reasoning 1. No. Explanations will vary. Samp ...
... interested in learning. Welcome to Geometry. This course will make math come alive with its many intriguing examples of geometry in the world around you, from baseball to theater lighting to. 4. Answers will vary. Possible answers: LESSON 2.4 • Deductive Reasoning 1. No. Explanations will vary. Samp ...
ALGEBRA 2 WKST
... For exercises 1 – 4, refer to the figure at the right. 1. Name all planes that are parallel to plane DEH.______________________________ 2. Name all segments that are parallel to AB .__________________________________ 3. Name all segments that intersect GH . _____________________________________ 4. N ...
... For exercises 1 – 4, refer to the figure at the right. 1. Name all planes that are parallel to plane DEH.______________________________ 2. Name all segments that are parallel to AB .__________________________________ 3. Name all segments that intersect GH . _____________________________________ 4. N ...
Euclidean geometry

Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.For more than two thousand years, the adjective ""Euclidean"" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only where the gravitational field is weak.Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates.