• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
phy3050newton3_Vectors
phy3050newton3_Vectors

Linear Algebra
Linear Algebra

PHYS2960 Fall 2010 matlab and maple for Physics Problems In-Class Exercise
PHYS2960 Fall 2010 matlab and maple for Physics Problems In-Class Exercise

... Fall 2010 ...
tutorial1
tutorial1

Solutions to Homework 2 - Math 3410 1. (Page 156: # 4.72) Let V be
Solutions to Homework 2 - Math 3410 1. (Page 156: # 4.72) Let V be

... 1~u = ~u. Hence [M4 ] is not a consequence of the other axioms. Solution The proofs of [A1 ], [A2 ], [A3 ], and [A4 ] are straightforward. Note that ~0 = (0, 0) and −(a, b) = (−a, −b). We have k((a1 , b1 ) + (a2 , b2 )) = k(a1 + a2 , b1 + b2 ) = (k(a1 + a2 ), 0) = (ka1 + ka2 , 0) = (ka1 , 0) + (ka2 ...
Lecture 3
Lecture 3

... so this is a non-linear operator. How about the rotation R̂q . We an really see that R̂q (w + v) = R̂q w + R̂q v geometrically. Rotating the sum of two vectors is the same as rotating them individually and then adding them. Rotation is linear. The same is true for projection operators P̂a . ...
3 - Vector Spaces
3 - Vector Spaces

These are brief notes for the lecture on Friday October 1, 2010: they
These are brief notes for the lecture on Friday October 1, 2010: they

HW4
HW4

Lab 4
Lab 4

... blowing from the west. Find the resultant speed and direction of the plane. Draw a picture. ...
5. n-dimensional space Definition 5.1. A vector in R n is an n
5. n-dimensional space Definition 5.1. A vector in R n is an n

Lee2-VS
Lee2-VS

Linear Algebra Basics A vector space (or, linear space) is an
Linear Algebra Basics A vector space (or, linear space) is an

17. Inner product spaces Definition 17.1. Let V be a real vector
17. Inner product spaces Definition 17.1. Let V be a real vector

“JUST THE MATHS” SLIDES NUMBER 8.1 VECTORS 1
“JUST THE MATHS” SLIDES NUMBER 8.1 VECTORS 1

In a previous class, we saw that the positive reals R+ is a vector
In a previous class, we saw that the positive reals R+ is a vector

Chapter 6 Vocabulary
Chapter 6 Vocabulary

Chapter 1 – Vector Spaces
Chapter 1 – Vector Spaces

Motion in an Inverse-Square Central Force Field
Motion in an Inverse-Square Central Force Field

ECE Lecture 22: Electrostatics – Coulomb`s Law
ECE Lecture 22: Electrostatics – Coulomb`s Law

lecture-2
lecture-2

Fall 1993 MA Comprehensive Exam in Algebra
Fall 1993 MA Comprehensive Exam in Algebra

... 5. Let V be a finite dimensional vector space over C and T : V → V be a linear transformation satisfying the equation T 4 = I. (a) Prove that T can be represented by a diagonal matrix. (b) Give an example to show that if V is a finite dimensional vector space over R, and T is as above, then T need ...
Vectors - barransclass
Vectors - barransclass

Reducing Dimensionality
Reducing Dimensionality

slides pptx - Tennessee State University
slides pptx - Tennessee State University

< 1 ... 60 61 62 63 64 65 66 67 68 ... 75 >

Vector space



A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied (""scaled"") by numbers, called scalars in this context. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below. Euclidean vectors are an example of a vector space. They represent physical quantities such as forces: any two forces (of the same type) can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, vectors representing displacements in the plane or in three-dimensional space also form vector spaces. Vectors in vector spaces do not necessarily have to be arrow-like objects as they appear in the mentioned examples: vectors are regarded as abstract mathematical objects with particular properties, which in some cases can be visualized as arrows.Vector spaces are the subject of linear algebra and are well understood from this point of view since vector spaces are characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. A vector space may be endowed with additional structure, such as a norm or inner product. Such spaces arise naturally in mathematical analysis, mainly in the guise of infinite-dimensional function spaces whose vectors are functions. Analytical problems call for the ability to decide whether a sequence of vectors converges to a given vector. This is accomplished by considering vector spaces with additional structure, mostly spaces endowed with a suitable topology, thus allowing the consideration of proximity and continuity issues. These topological vector spaces, in particular Banach spaces and Hilbert spaces, have a richer theory.Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors. The modern, more abstract treatment, first formulated by Giuseppe Peano in 1888, encompasses more general objects than Euclidean space, but much of the theory can be seen as an extension of classical geometric ideas like lines, planes and their higher-dimensional analogs.Today, vector spaces are applied throughout mathematics, science and engineering. They are the appropriate linear-algebraic notion to deal with systems of linear equations; offer a framework for Fourier expansion, which is employed in image compression routines; or provide an environment that can be used for solution techniques for partial differential equations. Furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques. Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report