• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
3.7.5 Multiplying Vectors and Matrices
3.7.5 Multiplying Vectors and Matrices

Quotient Spaces and Direct Sums. In what follows, we take V as a
Quotient Spaces and Direct Sums. In what follows, we take V as a

Supplement: Basis, Dimension and Rank
Supplement: Basis, Dimension and Rank

Vector Spaces - Michael Sullivan
Vector Spaces - Michael Sullivan

Ch. 6 Notes - Glassboro Public Schools
Ch. 6 Notes - Glassboro Public Schools

DIFFERENTIAL GEOMETRY. LECTURE 3, 22.05.08 2. Tangent
DIFFERENTIAL GEOMETRY. LECTURE 3, 22.05.08 2. Tangent

Three Dimensional Euclidean Space Coordinates of a Point
Three Dimensional Euclidean Space Coordinates of a Point

Lecture 3: Vector subspaces, sums, and direct sums (1)
Lecture 3: Vector subspaces, sums, and direct sums (1)

... Here, we used the existence of an additive inverse −(0 · u) of 0 · u, then (0.2), then associativity, then the additive inverse property, then the additive identity property. ...
The geometry of Euclidean Space
The geometry of Euclidean Space

Difference modules and vector spaces
Difference modules and vector spaces

Matrices - University of Sunderland
Matrices - University of Sunderland

1._SomeBasicMathematics
1._SomeBasicMathematics

FIN 285a: Computer Simulations and Risk Assessment
FIN 285a: Computer Simulations and Risk Assessment

48x36 poster template - Fairleigh Dickinson University
48x36 poster template - Fairleigh Dickinson University

Exercise Set iv 1. Let W1 be a set of all vectors (a, b, c, d) in R4 such
Exercise Set iv 1. Let W1 be a set of all vectors (a, b, c, d) in R4 such

... 1. Let W1 be a set of all vectors (a, b, c, d) in R4 such that a + d = 0 and W2 be a set of all vectors (a, b, c, d) in R4 such that ad = 0. Is W1 a subspace of R4 ? Is W2 a subspace of R4 ? 2. Let u~1 = (1, 1, 0), u~2 = (1, 0, 1), u~3 = (0, 1, 1) (a) Show that {u~1 , u~2 , u~3 } is linearly indepen ...
Lines and planes
Lines and planes

... Adding two vectors to each other can be visualized as putting one vector after the other. Multiplying a vector ~v with a real number c can be visualized as scaling ~v by c (see Figure 2). In this context, it is therefore usual to call c a scalar. ...
EGR2013 Tutorial 8 Linear Algebra Outline Powers of a Matrix and
EGR2013 Tutorial 8 Linear Algebra Outline Powers of a Matrix and

USE OF LINEAR ALGEBRA I Math 21b, O. Knill
USE OF LINEAR ALGEBRA I Math 21b, O. Knill

LECTURES MATH370-08C 1. Groups 1.1. Abstract groups versus
LECTURES MATH370-08C 1. Groups 1.1. Abstract groups versus

Math 2270 - Lecture 20: Orthogonal Subspaces
Math 2270 - Lecture 20: Orthogonal Subspaces

PDF
PDF

Solutions #5
Solutions #5

The 0/1 Knapsack problem – finding an optimal solution
The 0/1 Knapsack problem – finding an optimal solution

... The 0/1 Knapsack problem – finding an optimal solution • Each item is represented by a pair, . • The knapsack can accommodate items with a total weight of no more than w. • A vector, I, of length n, represents the set of available items. Each element of the vector is an item. • A vect ...
here
here

Continuous linear functionals on certain topological vector spaces
Continuous linear functionals on certain topological vector spaces

< 1 ... 57 58 59 60 61 62 63 64 65 ... 75 >

Vector space



A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied (""scaled"") by numbers, called scalars in this context. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below. Euclidean vectors are an example of a vector space. They represent physical quantities such as forces: any two forces (of the same type) can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, vectors representing displacements in the plane or in three-dimensional space also form vector spaces. Vectors in vector spaces do not necessarily have to be arrow-like objects as they appear in the mentioned examples: vectors are regarded as abstract mathematical objects with particular properties, which in some cases can be visualized as arrows.Vector spaces are the subject of linear algebra and are well understood from this point of view since vector spaces are characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. A vector space may be endowed with additional structure, such as a norm or inner product. Such spaces arise naturally in mathematical analysis, mainly in the guise of infinite-dimensional function spaces whose vectors are functions. Analytical problems call for the ability to decide whether a sequence of vectors converges to a given vector. This is accomplished by considering vector spaces with additional structure, mostly spaces endowed with a suitable topology, thus allowing the consideration of proximity and continuity issues. These topological vector spaces, in particular Banach spaces and Hilbert spaces, have a richer theory.Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors. The modern, more abstract treatment, first formulated by Giuseppe Peano in 1888, encompasses more general objects than Euclidean space, but much of the theory can be seen as an extension of classical geometric ideas like lines, planes and their higher-dimensional analogs.Today, vector spaces are applied throughout mathematics, science and engineering. They are the appropriate linear-algebraic notion to deal with systems of linear equations; offer a framework for Fourier expansion, which is employed in image compression routines; or provide an environment that can be used for solution techniques for partial differential equations. Furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques. Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report