• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Vectors-with
Vectors-with

HURWITZ` THEOREM 1. Introduction In this article we describe
HURWITZ` THEOREM 1. Introduction In this article we describe

Conservative vector fields
Conservative vector fields

CHAPTER IV NORMED LINEAR SPACES AND BANACH SPACES
CHAPTER IV NORMED LINEAR SPACES AND BANACH SPACES

View File - UET Taxila
View File - UET Taxila

Matlab Notes for Student Manual What is Matlab?
Matlab Notes for Student Manual What is Matlab?

... %displays a string, and the smalledst odd number whose cube is greater %than 4500. disp('Its cube is:') ...
matlab basics - University of Engineering and Technology, Taxila
matlab basics - University of Engineering and Technology, Taxila

7-3 The Biot-Savart Law and the Magnetic Vector Potential
7-3 The Biot-Savart Law and the Magnetic Vector Potential

Inner Product Spaces - Penn State Mechanical Engineering
Inner Product Spaces - Penn State Mechanical Engineering

The Frechet space of holomorphic functions on the unit disc
The Frechet space of holomorphic functions on the unit disc

... If a locally convex space is metrizable with a complete metric, then it is called a Fréchet space. We now prove conditions under which a topological vector space is normable. Theorem 7. A topological vector space (X, τ ) is normable if and only if there is a convex bounded open neighborhood of the ...
Gradient, divergence, curl, their integrals, and their role in
Gradient, divergence, curl, their integrals, and their role in

Rotations - FSU Math
Rotations - FSU Math

The weak topology of locally convex topological vector spaces and
The weak topology of locally convex topological vector spaces and

Solution Key
Solution Key

Handout16B
Handout16B

... if the triangle is degenerated to one where the a+b edge contains both the a and b edges as segments. In the cases at hand, this means that Ajkvj = r Akkvk for each j. Thus, not only does each vj have the same norm as vk, each is a multiple of vk with that multiple being a positive real number. This ...
ORTHOGONAL BUNDLES OVER CURVES IN CHARACTERISTIC
ORTHOGONAL BUNDLES OVER CURVES IN CHARACTERISTIC

... We denote by φ and ψ generators of the one-dimensional spaces Hom(F∗ OX , A) and Hom(A, B −1 ). (iii) The restriction of the quadratic form det to the subbundle F∗ OX equals the evaluation morphism F ∗ F∗ OX −→ OX . In particular the restriction of β to F∗ OX is identically zero. (iv) Let x and y be ...
Van Der Vaart, H.R.; (1966)An elementary deprivation of the Jordan normal form with an appendix on linear spaces. A didactical report."
Van Der Vaart, H.R.; (1966)An elementary deprivation of the Jordan normal form with an appendix on linear spaces. A didactical report."

Tensors - University of Miami Physics Department
Tensors - University of Miami Physics Department

DISTANCE EDUCATION M.Phil. (Mathematics) DEGREE
DISTANCE EDUCATION M.Phil. (Mathematics) DEGREE

Notes: Orthogonal transformations and isometries
Notes: Orthogonal transformations and isometries

Baire Category Theorem
Baire Category Theorem

Hodge Theory
Hodge Theory

November 20, 2013 NORMED SPACES Contents 1. The Triangle
November 20, 2013 NORMED SPACES Contents 1. The Triangle

... Since Mn (F ) is finite dimensional, all the norms are equivalent. Therefore, to check convergence, any of the norms can be used. Depending on the practical applications some norms are more useful than others. 3.3. Remarks on infinite dimensions. By contrast to the finite-dimensional vector spaces, ...
Chapter 2 Defn 1. - URI Math Department
Chapter 2 Defn 1. - URI Math Department

... Defn 2. (p. 67) Let V and W be vector spaces, and let T : V → W be linear. We define the null space (or kernel) N (T ) of T to be the set of all vectors x in V such that T (x) = 0; N (T ) = {x ∈ V : T (x) = 0}. We define the range (or image) R(T ) of T to be the subset W consisting of all images (un ...
LECTURE 2 – GROUPS
LECTURE 2 – GROUPS

< 1 ... 20 21 22 23 24 25 26 27 28 ... 75 >

Vector space



A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied (""scaled"") by numbers, called scalars in this context. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below. Euclidean vectors are an example of a vector space. They represent physical quantities such as forces: any two forces (of the same type) can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, vectors representing displacements in the plane or in three-dimensional space also form vector spaces. Vectors in vector spaces do not necessarily have to be arrow-like objects as they appear in the mentioned examples: vectors are regarded as abstract mathematical objects with particular properties, which in some cases can be visualized as arrows.Vector spaces are the subject of linear algebra and are well understood from this point of view since vector spaces are characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. A vector space may be endowed with additional structure, such as a norm or inner product. Such spaces arise naturally in mathematical analysis, mainly in the guise of infinite-dimensional function spaces whose vectors are functions. Analytical problems call for the ability to decide whether a sequence of vectors converges to a given vector. This is accomplished by considering vector spaces with additional structure, mostly spaces endowed with a suitable topology, thus allowing the consideration of proximity and continuity issues. These topological vector spaces, in particular Banach spaces and Hilbert spaces, have a richer theory.Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors. The modern, more abstract treatment, first formulated by Giuseppe Peano in 1888, encompasses more general objects than Euclidean space, but much of the theory can be seen as an extension of classical geometric ideas like lines, planes and their higher-dimensional analogs.Today, vector spaces are applied throughout mathematics, science and engineering. They are the appropriate linear-algebraic notion to deal with systems of linear equations; offer a framework for Fourier expansion, which is employed in image compression routines; or provide an environment that can be used for solution techniques for partial differential equations. Furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques. Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report