• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Maxwell`s Equations in Terms of Differential Forms
Maxwell`s Equations in Terms of Differential Forms

IMAGE AND KERNEL OF A LINEAR TRANSFORMATION
IMAGE AND KERNEL OF A LINEAR TRANSFORMATION

Chap5
Chap5

... Def: Let U &V are two subspaces of W . We say that W is a direct sum of U &V ,denoted by W  U  V , if each wW can be written uniquely as a sum u  v , where u U & v V Example: Let ...
MATH 310, REVIEW SHEET 1 These notes are a very short
MATH 310, REVIEW SHEET 1 These notes are a very short

Why study matrix groups?
Why study matrix groups?

Course Notes roughly up to 4/6
Course Notes roughly up to 4/6

homework 11
homework 11

Ultraproducts of Banach Spaces
Ultraproducts of Banach Spaces

quasi - mackey topology - Revistas académicas, Universidad
quasi - mackey topology - Revistas académicas, Universidad

TANGENT SPACES OF BUNDLES AND OF FILTERED
TANGENT SPACES OF BUNDLES AND OF FILTERED

Chapter 1 Linear Algebra
Chapter 1 Linear Algebra

The fixed point index for noncompact mappings in non locally
The fixed point index for noncompact mappings in non locally

ppt
ppt

L.L. STACHÓ- B. ZALAR, Bicircular projections in some matrix and
L.L. STACHÓ- B. ZALAR, Bicircular projections in some matrix and

... This implies P 2 x = p 2 x + x(p t )2 + 2pxp t = px + xp t = P x so P is in fact a projection on A(H ). Denote by q the complementary projection, i.e. q = 1 − p. Given θ ∈ R we consider the element u = e−iθ/2 p + eiθ/2 q. Since uu∗ = (e−iθ/2 p + eiθ/2 q) (eiθ/2 p + e−iθ/2 q) = p + q = 1, the element ...
Chapter 17
Chapter 17

Slide 1
Slide 1

Topological Quantum Field Theory and Information Theory
Topological Quantum Field Theory and Information Theory

OPERATOR SPACES: BASIC THEORY AND APPLICATIONS
OPERATOR SPACES: BASIC THEORY AND APPLICATIONS

EIGENVALUES AND EIGENVECTORS
EIGENVALUES AND EIGENVECTORS

Homogeneous operators on Hilbert spaces of holomorphic functions
Homogeneous operators on Hilbert spaces of holomorphic functions

... The case where dim Vn = 1 for each n is completely known, the corresponding operators have been classified in [5]. The classification in the case where dim Vn ≤ 2 and T belongs to the Cowen Douglas class of D is complete and the operators are explicitly described in [12]. Beyond this there are only ...
Problem Set 4 - MIT Mathematics
Problem Set 4 - MIT Mathematics

Review of Vector Analysis
Review of Vector Analysis

isometric immersions of lorentz space with parallel second
isometric immersions of lorentz space with parallel second

... manifold is always diagonalizable, ...
On measure concentration of vector valued maps
On measure concentration of vector valued maps

Review of Matrices and Vectors
Review of Matrices and Vectors

... aligns the data along the eigenvectors of the covariance matrix of the population. The preceding concepts are illustrated in the following figure. Part (a) shows a data population {x} in two dimensions, along with the eigenvectors of Cx (the black dot is the mean). The result of performing the trans ...
< 1 ... 18 19 20 21 22 23 24 25 26 ... 75 >

Vector space



A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied (""scaled"") by numbers, called scalars in this context. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below. Euclidean vectors are an example of a vector space. They represent physical quantities such as forces: any two forces (of the same type) can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, vectors representing displacements in the plane or in three-dimensional space also form vector spaces. Vectors in vector spaces do not necessarily have to be arrow-like objects as they appear in the mentioned examples: vectors are regarded as abstract mathematical objects with particular properties, which in some cases can be visualized as arrows.Vector spaces are the subject of linear algebra and are well understood from this point of view since vector spaces are characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. A vector space may be endowed with additional structure, such as a norm or inner product. Such spaces arise naturally in mathematical analysis, mainly in the guise of infinite-dimensional function spaces whose vectors are functions. Analytical problems call for the ability to decide whether a sequence of vectors converges to a given vector. This is accomplished by considering vector spaces with additional structure, mostly spaces endowed with a suitable topology, thus allowing the consideration of proximity and continuity issues. These topological vector spaces, in particular Banach spaces and Hilbert spaces, have a richer theory.Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors. The modern, more abstract treatment, first formulated by Giuseppe Peano in 1888, encompasses more general objects than Euclidean space, but much of the theory can be seen as an extension of classical geometric ideas like lines, planes and their higher-dimensional analogs.Today, vector spaces are applied throughout mathematics, science and engineering. They are the appropriate linear-algebraic notion to deal with systems of linear equations; offer a framework for Fourier expansion, which is employed in image compression routines; or provide an environment that can be used for solution techniques for partial differential equations. Furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques. Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report