Factors controlling heat exchange between the human body and its
... 1. To demonstrate the dependence of the focal depth on the distance of the object, find the clear reduced and magnified images of an object in the Bessel arrangement. Fix the lens in the positions relating to these images formations and, by moving the object through systematic (e.g. ±0,5cm) distance ...
... 1. To demonstrate the dependence of the focal depth on the distance of the object, find the clear reduced and magnified images of an object in the Bessel arrangement. Fix the lens in the positions relating to these images formations and, by moving the object through systematic (e.g. ±0,5cm) distance ...
Chapter 1 Data Communications and Networks Overview
... the variables in one equation that others methods could not. The discovered function shows an excellent match to the experimental data as well as, the predicting experimental data that are not used in the training session. GP find a model that depend on two variables (, T) not one variable as i ...
... the variables in one equation that others methods could not. The discovered function shows an excellent match to the experimental data as well as, the predicting experimental data that are not used in the training session. GP find a model that depend on two variables (, T) not one variable as i ...
Prisms Lab - Mr. Ahearn`s Science
... • Prisms are typically made out of glass, but can be made from any material that is transparent to the wavelength for which they are designed. • A prism can be used to break light up into its spectral colors (ROY G BIV). Prisms can also be used to reflect light, or to split light into components. ...
... • Prisms are typically made out of glass, but can be made from any material that is transparent to the wavelength for which they are designed. • A prism can be used to break light up into its spectral colors (ROY G BIV). Prisms can also be used to reflect light, or to split light into components. ...
unit –iii fiber optics and applications part-a 2
... 12. What is called mode of propagation in optical fibers? Mode of propagation represents the number of possible directions or the path of propagation of light through the optical fibers. When single ray of light propagate through a path then it is called single mode and when many rays propagates thr ...
... 12. What is called mode of propagation in optical fibers? Mode of propagation represents the number of possible directions or the path of propagation of light through the optical fibers. When single ray of light propagate through a path then it is called single mode and when many rays propagates thr ...
Different Types of Dispersions in an Optical Fiber
... The amount that a ray of light passing from a lower refractive index to a higher one is bent towards the normal. But light going from a higher index to a lower one refracting away from the normal, as shown in the figures. As the angle of incidence increases, the angle of refraction approaches 90o to ...
... The amount that a ray of light passing from a lower refractive index to a higher one is bent towards the normal. But light going from a higher index to a lower one refracting away from the normal, as shown in the figures. As the angle of incidence increases, the angle of refraction approaches 90o to ...
Presentation PPT
... electromagnetic wave in a PCF can be regarded as a modified total internal reflection mechanism. 2. Photonic bandgap mechanism: If the central defect is realized by inserting a central air capillary, which has a diameter different than other capillaries (usually bigger), then we can obtain a photoni ...
... electromagnetic wave in a PCF can be regarded as a modified total internal reflection mechanism. 2. Photonic bandgap mechanism: If the central defect is realized by inserting a central air capillary, which has a diameter different than other capillaries (usually bigger), then we can obtain a photoni ...
Dispersion staining
The optical properties of all liquid and solid materials change as a function of the wavelength of light used to measure them. This change as a function of wavelength is called the dispersion of the optical properties. The graph created by plotting the optical property of interest by the wavelength at which it is measured is called a dispersion curve.The dispersion staining is an analytical technique used in light microscopy that takes advantage of the differences in the dispersion curve of the refractive index of an unknown material relative to a standard material with a known dispersion curve to identify or characterize that unknown material. These differences become manifest as a color when the two dispersion curves intersect for some visible wavelength. This is an optical staining technique and requires no stains or dyes to produce the color. Its primary use today is in the conformation of the presence of asbestos in construction materials but it has many other applications.