• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Ch 8 AP Practice
Ch 8 AP Practice

Course Syllabus - Honors Chemistry
Course Syllabus - Honors Chemistry

Collision Theory
Collision Theory

P084
P084

History of Life on Earth
History of Life on Earth

08. Physical-chemical essence of surface phenomenon
08. Physical-chemical essence of surface phenomenon

04. Physical-chemical essence of surface phenomenon
04. Physical-chemical essence of surface phenomenon

Impact of base substrate on perceived and measured surface
Impact of base substrate on perceived and measured surface

On-surface photo-dissociation of C
On-surface photo-dissociation of C

Phenomena at curved surfaces
Phenomena at curved surfaces

O 95: Metal Substrates: Adsorption of Atoms and Inorganic Molecules
O 95: Metal Substrates: Adsorption of Atoms and Inorganic Molecules

2.1 The Nature of Matter - Sonoma Valley High School
2.1 The Nature of Matter - Sonoma Valley High School

Switchable nanocatalysts: using ferroelectric oxides to control surface catalysis
Switchable nanocatalysts: using ferroelectric oxides to control surface catalysis

Supplementary information
Supplementary information

Seminario Tunable electronic properties of self
Seminario Tunable electronic properties of self

Nano-transistors Sensitive to Vibrations in a Single Molecule
Nano-transistors Sensitive to Vibrations in a Single Molecule

< 1 ... 21 22 23 24 25

Self-assembled monolayer



Self-assembled monolayers (SAM) of organic molecules are molecular assemblies formed spontaneously on surfaces by adsorption and are organized into more or less large ordered domains. In some cases molecules that form the monolayer do not interact strongly with the substrate. This is the case for instance of the two-dimensional supramolecular networks of e.g. Perylene-tetracarboxylicacid-dianhydride (PTCDA) on gold or of e.g. porphyrins on highly oriented pyrolitic graphite (HOPG). In other cases the molecules possess a head group that has a strong affinity to the substrate and anchors the molecule to it. Such a SAM consisting of a head group, tail and functional end group is depicted in Figure 1. Common head groups include thiols, silanes, phosphonates, etc.SAMs are created by the chemisorption of ""head groups"" onto a substrate from either the vapor or liquid phase followed by a slow organization of ""tail groups"". Initially, at small molecular density on the surface, adsorbate molecules form either a disordered mass of molecules or form an ordered two-dimensional ""lying down phase"", and at higher molecular coverage, over a period of minutes to hours, begin to form three-dimensional crystalline or semicrystalline structures on the substrate surface. The ""head groups"" assemble together on the substrate, while the tail groups assemble far from the substrate. Areas of close-packed molecules nucleate and grow until the surface of the substrate is covered in a single monolayer.Adsorbate molecules adsorb readily because they lower the surface free-energy of the substrate and are stable due to the strong chemisorption of the ""head groups."" These bonds create monolayers that are more stable than the physisorbed bonds of Langmuir–Blodgett films. A Trichlorosilane based ""head group"", for example in a FDTS molecule reacts with an hydroxyl group on a substrate, and forms very stable, covalent bond [R-Si-O-substrate] with an energy of 452 kJ/mol. Thiol-metal bonds, that are on the order of 100 kJ/mol, making the bond a fairly stable in a variety of temperature, solvents, and potentials. The monolayer packs tightly due to van der Waals interactions, thereby reducing its own free energy. The adsorption can be described by the Langmuir adsorption isotherm if lateral interactions are neglected. If they cannot be neglected, the adsorption is better described by the Frumkin isotherm.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report