
Polarization effects and the calibration of a donut beam axial optical
... FIG. 1. Optical Setup. A 1064 nm, near-infrared laser is projected onto a phase-only SLM, and imaged on the back aperture of a high-N.A. objective. An aperture is introduced shortly after the SLM to block all but the first-order diffracted light. The sample plane is illuminated by a white-light LED ...
... FIG. 1. Optical Setup. A 1064 nm, near-infrared laser is projected onto a phase-only SLM, and imaged on the back aperture of a high-N.A. objective. An aperture is introduced shortly after the SLM to block all but the first-order diffracted light. The sample plane is illuminated by a white-light LED ...
Influence of substrate configuration on the angular response pattern
... the axis of rotation of the goniometer and co-aligning to the laser beam. The output beam of the CO2 laser is attenuated to a low power using neutral density filters, chopped with a mechanical chopper, and focused with F/8 optics to a near diffraction-limited spot size of approximately 230 µm. The d ...
... the axis of rotation of the goniometer and co-aligning to the laser beam. The output beam of the CO2 laser is attenuated to a low power using neutral density filters, chopped with a mechanical chopper, and focused with F/8 optics to a near diffraction-limited spot size of approximately 230 µm. The d ...
Diffraction - ICT for IST
... Diffraction of a circular wave on an obstacle The table cells contain the names of files, available on your CD, which illustrate the diffraction of a circular wave on an obstacle of different width. E.g. “soundwaterlight- en.jar” or “diffraction_Fresnel_obstacle_slit.zip” are simulation files, avail ...
... Diffraction of a circular wave on an obstacle The table cells contain the names of files, available on your CD, which illustrate the diffraction of a circular wave on an obstacle of different width. E.g. “soundwaterlight- en.jar” or “diffraction_Fresnel_obstacle_slit.zip” are simulation files, avail ...
Variable Incidence Angle Fluorescence Interference Contrast
... context of surface-generated structured illumination techniques, reconstructed resolution is the minimum z displacement between two fluorescent objects that can be separately identified by numerical processing of images obtained with different excitation intensity functions. The level of this attain ...
... context of surface-generated structured illumination techniques, reconstructed resolution is the minimum z displacement between two fluorescent objects that can be separately identified by numerical processing of images obtained with different excitation intensity functions. The level of this attain ...
Free-space optical communications have distinct advantages over
... information is directly related to the bandwidth of the modulated carrier. Thus, the increase of the carrier frequency results in a large available transmission bandwidth and optical frequencies have a usable bandwidth about 105 times that of a carrier in the RF range. This available improvement is ...
... information is directly related to the bandwidth of the modulated carrier. Thus, the increase of the carrier frequency results in a large available transmission bandwidth and optical frequencies have a usable bandwidth about 105 times that of a carrier in the RF range. This available improvement is ...
Airy disk
In optics, the Airy disk (or Airy disc) and Airy pattern are descriptions of the best focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light. The Airy disk is of importance in physics, optics, and astronomy.The diffraction pattern resulting from a uniformly-illuminated circular aperture has a bright region in the center, known as the Airy disk which together with the series of concentric bright rings around is called the Airy pattern. Both are named after George Biddell Airy. The disk and rings phenomenon had been known prior to Airy; John Herschel described the appearance of a bright star seen through a telescope under high magnification for an 1828 article on light for the Encyclopedia Metropolitana:...the star is then seen (in favourable circumstances of tranquil atmosphere, uniform temperature, &c.) as a perfectly round, well-defined planetary disc, surrounded by two, three, or more alternately dark and bright rings, which, if examined attentively, are seen to be slightly coloured at their borders. They succeed each other nearly at equal intervals round the central disc....However, Airy wrote the first full theoretical treatment explaining the phenomenon (his 1835 ""On the Diffraction of an Object-glass with Circular Aperture"").Mathematically, the diffraction pattern is characterized by the wavelength of light illuminating the circular aperture, and the aperture's size. The appearance of the diffraction pattern is additionally characterized by the sensitivity of the eye or other detector used to observe the pattern.The most important application of this concept is in cameras and telescopes. Owing to diffraction, the smallest point to which a lens or mirror can focus a beam of light is the size of the Airy disk. Even if one were able to make a perfect lens, there is still a limit to the resolution of an image created by this lens. An optical system in which the resolution is no longer limited by imperfections in the lenses but only by diffraction is said to be diffraction limited.