• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Full text
Full text

Babylonia
Babylonia

Friedman`s Translation
Friedman`s Translation

Fibonacci Rectangles - Oldham Sixth Form College
Fibonacci Rectangles - Oldham Sixth Form College

Math 7 Pre_AP
Math 7 Pre_AP

Course 3 - Pearson
Course 3 - Pearson

Integrated Algebra B
Integrated Algebra B

Algebra I Algebra I Competency Statement
Algebra I Algebra I Competency Statement

MATH 012 (Fall 2005)
MATH 012 (Fall 2005)

We showed on Tuesday that Every relation in the arithmetical
We showed on Tuesday that Every relation in the arithmetical

An Upper Bound on the nth Prime - Mathematical Association of
An Upper Bound on the nth Prime - Mathematical Association of

lec26-first-order
lec26-first-order

... But there exists first order theories defined by axioms which are not sufficient for proving all T-valid formulas. ...
MATHEMATICS VOCABULARY 1. Numbers • Integers (whole
MATHEMATICS VOCABULARY 1. Numbers • Integers (whole

Lecture 10. Model theory. Consistency, independence
Lecture 10. Model theory. Consistency, independence

Examples of mathematical writing
Examples of mathematical writing

... Prime numbers are essential to crytography, Euclid’s famous theorem has held generations of mathematicians spellbound in it’s inescapable beauty. Theorem. (Euclid, 400) There are infinitely many prime numbers, where a prime is a number only divisible by itself and 1. (Throughout this project, number ...
Microsoft Word version
Microsoft Word version

situation 1
situation 1

Math Placement Test
Math Placement Test

mathematics - Textbooks Online
mathematics - Textbooks Online

SAMPLE PAPER SYLLABUS 2017-18
SAMPLE PAPER SYLLABUS 2017-18

Babylonian Mathematics: Classroom Activities 1
Babylonian Mathematics: Classroom Activities 1

MATH 6
MATH 6

Category 3 (Number Theory) Packet
Category 3 (Number Theory) Packet

Task - Illustrative Mathematics
Task - Illustrative Mathematics

Hierarchical Introspective Logics
Hierarchical Introspective Logics

< 1 ... 176 177 178 179 180 181 182 183 184 ... 187 >

Foundations of mathematics

Foundations of mathematics is the study of the logical and philosophical basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be quite vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts (number, geometrical figure, set, function, etc.) and how they form hierarchies of more complex structures and concepts, especially the fundamentally important structures that form the language of mathematics (formulas, theories and their models giving a meaning to formulas, definitions, proofs, algorithms, etc.) also called metamathematical concepts, with an eye to the philosophical aspects and the unity of mathematics. The search for foundations of mathematics is a central question of the philosophy of mathematics; the abstract nature of mathematical objects presents special philosophical challenges.The foundations of mathematics as a whole does not aim to contain the foundations of every mathematical topic.Generally, the foundations of a field of study refers to a more-or-less systematic analysis of its most basic or fundamental concepts, its conceptual unity and its natural ordering or hierarchy of concepts, which may help to connect it with the rest of human knowledge. The development, emergence and clarification of the foundations can come late in the history of a field, and may not be viewed by everyone as its most interesting part.Mathematics always played a special role in scientific thought, serving since ancient times as a model of truth and rigor for rational inquiry, and giving tools or even a foundation for other sciences (especially physics). Mathematics' many developments towards higher abstractions in the 19th century brought new challenges and paradoxes, urging for a deeper and more systematic examination of the nature and criteria of mathematical truth, as well as a unification of the diverse branches of mathematics into a coherent whole.The systematic search for the foundations of mathematics started at the end of the 19th century and formed a new mathematical discipline called mathematical logic, with strong links to theoretical computer science.It went through a series of crises with paradoxical results, until the discoveries stabilized during the 20th century as a large and coherent body of mathematical knowledge with several aspects or components (set theory, model theory, proof theory, etc.), whose detailed properties and possible variants are still an active research field.Its high level of technical sophistication inspired many philosophers to conjecture that it can serve as a model or pattern for the foundations of other sciences.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report