
Doing Linear Algebra in Sage – Part 2 – Simple Matrix Calculations
... Setting the size of the matrix and entering its values Suppose we want to create the set of 3x3 matrices over Q. The command is sage: M = MatrixSpace(QQ,3) You could have gotten the same result by typing sage: M = MatrixSpace(QQ,3,3) and, as you can guess, MatrixSpace(QQ,3,2) will give you 3x2 matri ...
... Setting the size of the matrix and entering its values Suppose we want to create the set of 3x3 matrices over Q. The command is sage: M = MatrixSpace(QQ,3) You could have gotten the same result by typing sage: M = MatrixSpace(QQ,3,3) and, as you can guess, MatrixSpace(QQ,3,2) will give you 3x2 matri ...
COPY OF A LETTER FROM SIR WILLIAM R. HAMILTON
... ax − b2 − c2 + i(a + x)b + j(a + x)c + k(bc − bc), in which the coefficient of k still vanishes; and ax − b2 − c2 , (a + x)b, (a + x)c are easily found to be the correct coordinates of the product-point, in the sense that the rotation from the unit line to the radius vector of a, b, c, being added i ...
... ax − b2 − c2 + i(a + x)b + j(a + x)c + k(bc − bc), in which the coefficient of k still vanishes; and ax − b2 − c2 , (a + x)b, (a + x)c are easily found to be the correct coordinates of the product-point, in the sense that the rotation from the unit line to the radius vector of a, b, c, being added i ...
Precalculus 6.4, 6.5 Review Name #_____ I can solve problems
... □ I can solve problems involving polar coordinates. □ I will graph polar coordinates. □ I will give multiple names for the same point using polar coordinates. □ I will convert from rectangular to polar coordinates and from polar coordinates to rectangular. □ I will find the distance between polar co ...
... □ I can solve problems involving polar coordinates. □ I will graph polar coordinates. □ I will give multiple names for the same point using polar coordinates. □ I will convert from rectangular to polar coordinates and from polar coordinates to rectangular. □ I will find the distance between polar co ...
Cartesian tensor
In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is through an orthogonal transformation.The most familiar coordinate systems are the two-dimensional and three-dimensional Cartesian coordinate systems. Cartesian tensors may be used with any Euclidean space, or more technically, any finite-dimensional vector space over the field of real numbers that has an inner product.Use of Cartesian tensors occurs in physics and engineering, such as with the Cauchy stress tensor and the moment of inertia tensor in rigid body dynamics. Sometimes general curvilinear coordinates are convenient, as in high-deformation continuum mechanics, or even necessary, as in general relativity. While orthonormal bases may be found for some such coordinate systems (e.g. tangent to spherical coordinates), Cartesian tensors may provide considerable simplification for applications in which rotations of rectilinear coordinate axes suffice. The transformation is a passive transformation, since the coordinates are changed and not the physical system.