
LECTURE NO.19 Gauss`s law
... possible directions on this line. The two possible coordinate systems which result are called 'right-handed' and 'left-handed'. The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system ...
... possible directions on this line. The two possible coordinate systems which result are called 'right-handed' and 'left-handed'. The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system ...
matrices and systems of equations
... Solution: c. This matrix has two rows and two columns. The order of the matrix is 2 2. d. This matrix has three rows and two columns. The order of the matrix is 3 2. ...
... Solution: c. This matrix has two rows and two columns. The order of the matrix is 2 2. d. This matrix has three rows and two columns. The order of the matrix is 3 2. ...
twisted free tensor products - American Mathematical Society
... correspondence from px.b.s to tf.p.s. The total space of a p.c.b. may have more than one representation as a t.f.p. 3. The construction of a twisted free tensor product. In this section we associate with every t.f.p. A * , FX, a differential graded algebra, which we call a twisted free tensor produc ...
... correspondence from px.b.s to tf.p.s. The total space of a p.c.b. may have more than one representation as a t.f.p. 3. The construction of a twisted free tensor product. In this section we associate with every t.f.p. A * , FX, a differential graded algebra, which we call a twisted free tensor produc ...
Cartesian tensor
In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is through an orthogonal transformation.The most familiar coordinate systems are the two-dimensional and three-dimensional Cartesian coordinate systems. Cartesian tensors may be used with any Euclidean space, or more technically, any finite-dimensional vector space over the field of real numbers that has an inner product.Use of Cartesian tensors occurs in physics and engineering, such as with the Cauchy stress tensor and the moment of inertia tensor in rigid body dynamics. Sometimes general curvilinear coordinates are convenient, as in high-deformation continuum mechanics, or even necessary, as in general relativity. While orthonormal bases may be found for some such coordinate systems (e.g. tangent to spherical coordinates), Cartesian tensors may provide considerable simplification for applications in which rotations of rectilinear coordinate axes suffice. The transformation is a passive transformation, since the coordinates are changed and not the physical system.