• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Integers on a Number Line
Integers on a Number Line

Use Integers and Rational Numbers (2
Use Integers and Rational Numbers (2

Chapter 4
Chapter 4

Rational Numbers and Operations
Rational Numbers and Operations

Rational vs Irrational Numbers
Rational vs Irrational Numbers

Writing and Evaluating Algebraic Expressions Integers and Absolute
Writing and Evaluating Algebraic Expressions Integers and Absolute

... Subtract the absolute values. The sign for the difference will be the same as that of the integer with the greater absolute value. ...
Accentuate the Negative
Accentuate the Negative

Integer Intro Notes
Integer Intro Notes

Guided Notes: Comparing and Ordering Integers, Absolute Value
Guided Notes: Comparing and Ordering Integers, Absolute Value

Real Number Properties and Basic Word Problems
Real Number Properties and Basic Word Problems

Positive and Negative Numbers
Positive and Negative Numbers

Discrete Math, Spring 2013 - Some Sample Problems
Discrete Math, Spring 2013 - Some Sample Problems

Study Guide for Test 1
Study Guide for Test 1

MA 15300 Lesson 1 Notes I REAL NUMBERS Natural Numbers: 1, 2
MA 15300 Lesson 1 Notes I REAL NUMBERS Natural Numbers: 1, 2

Class 07 Chapter Integer Practice paper - 4
Class 07 Chapter Integer Practice paper - 4

The Real Number System.
The Real Number System.

Mid-Chapter Quiz for Chapter 1
Mid-Chapter Quiz for Chapter 1

skills summary - SAT
skills summary - SAT

Comparing Fractions
Comparing Fractions

Number Sets - Show Me the Math
Number Sets - Show Me the Math

... repeating pattern of digits (non-repeating decimals). Although there may be a pattern to the way they are written there is no pattern of digits that repeats. Examples of irrational numbers that have patterns to the way they are written but do not have repeating patterns of the same digits are .10100 ...
chapter 6
chapter 6

Absolute Value
Absolute Value

2. integer numbers
2. integer numbers

Mathematics for engineering technicians Unit 4
Mathematics for engineering technicians Unit 4

1.6 the number line.fm
1.6 the number line.fm

< 1 ... 42 43 44 45 46 47 48 49 50 ... 53 >

P-adic number



In mathematics the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a way different from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of ""closeness"" or absolute value. In particular, p-adic numbers have the interesting property that they are said to be close when their difference is divisible by a high power of p – the higher the power the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.p-adic numbers were first described by Kurt Hensel in 1897, though with hindsight some of Kummer's earlier work can be interpreted as implicitly using p-adic numbers. The p-adic numbers were motivated primarily by an attempt to bring the ideas and techniques of power series methods into number theory. Their influence now extends far beyond this. For example, the field of p-adic analysis essentially provides an alternative form of calculus.More formally, for a given prime p, the field Qp of p-adic numbers is a completion of the rational numbers. The field Qp is also given a topology derived from a metric, which is itself derived from the p-adic order, an alternative valuation on the rational numbers. This metric space is complete in the sense that every Cauchy sequence converges to a point in Qp. This is what allows the development of calculus on Qp, and it is the interaction of this analytic and algebraic structure which gives the p-adic number systems their power and utility.The p in p-adic is a variable and may be replaced with a prime (yielding, for instance, ""the 2-adic numbers"") or another placeholder variable (for expressions such as ""the ℓ-adic numbers""). The ""adic"" of ""p-adic"" comes from the ending found in words such as dyadic or triadic, and the p means a prime number.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report