
Equations
... In Chapter 10 the students will identify segments and lines related to circles, using properties of arcs and chords of circles, using inscribed angles and properties of inscribed polygons .Students find the lengths of the segments of chords, tangents, and secants, they find the equation of a circle ...
... In Chapter 10 the students will identify segments and lines related to circles, using properties of arcs and chords of circles, using inscribed angles and properties of inscribed polygons .Students find the lengths of the segments of chords, tangents, and secants, they find the equation of a circle ...
Chapter 7: Systems of Equations
... 2x + y = 0 and y = –2x + 1 Write each equation in slope-intercept form. First equation, 2x + y = 0 y = –2x (subtract 2x from both sides) Second equation, y = –2x + 1 (already in slope-intercept form) The two lines are parallel lines (same slope, but different yintercepts), so there are no solutions. ...
... 2x + y = 0 and y = –2x + 1 Write each equation in slope-intercept form. First equation, 2x + y = 0 y = –2x (subtract 2x from both sides) Second equation, y = –2x + 1 (already in slope-intercept form) The two lines are parallel lines (same slope, but different yintercepts), so there are no solutions. ...
Slide 1
... Why are we moving on to Solving Equations? First we evaluated expressions where we were given the value of the variable and had which solution made the equation true. Now, we are told what the expression equals and we need to find the value of the variable. When solving equations, the goal is to is ...
... Why are we moving on to Solving Equations? First we evaluated expressions where we were given the value of the variable and had which solution made the equation true. Now, we are told what the expression equals and we need to find the value of the variable. When solving equations, the goal is to is ...
Partial differential equation

In mathematics, a partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives. (A special case are ordinary differential equations (ODEs), which deal with functions of a single variable and their derivatives.) PDEs are used to formulate problems involving functions of several variables, and are either solved by hand, or used to create a relevant computer model.PDEs can be used to describe a wide variety of phenomena such as sound, heat, electrostatics, electrodynamics, fluid flow, elasticity, or quantum mechanics. These seemingly distinct physical phenomena can be formalised similarly in terms of PDEs. Just as ordinary differential equations often model one-dimensional dynamical systems, partial differential equations often model multidimensional systems. PDEs find their generalisation in stochastic partial differential equations.