• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Hypothesis Tests
Hypothesis Tests

... variables have different variances, or, if you have a single variable that contains values for two groups, you can determine whether the variance differs between the groups. The data set analyzed in this example, Gpa, contains test scores for 224 students. The data include the students’ grade point ...
Introduction to Hypothesis Testing
Introduction to Hypothesis Testing

Means - People
Means - People

Checking Parametric Statistic Assumptions in SPSS
Checking Parametric Statistic Assumptions in SPSS

Handout - rci.rutgers.edu
Handout - rci.rutgers.edu

Lecture 12 - University of Pennsylvania
Lecture 12 - University of Pennsylvania

Note
Note

The Assumptions of ANOVA - ROHAN Academic Computing
The Assumptions of ANOVA - ROHAN Academic Computing

Lectures 2 and 3 - Goodness-of-Fit (GoF) Tests
Lectures 2 and 3 - Goodness-of-Fit (GoF) Tests

9.2 A Significance Test for a Mean
9.2 A Significance Test for a Mean

Section 11.3 - Navidi/Monk
Section 11.3 - Navidi/Monk

Hypothesis Tests about the Mean and Proportion
Hypothesis Tests about the Mean and Proportion

Document
Document

Preliminary Practice Exam for BST621
Preliminary Practice Exam for BST621

Topic 08
Topic 08

Statistical Reporting Supplement
Statistical Reporting Supplement

One-way ANOVA and Block Designs
One-way ANOVA and Block Designs

ANOVAs01
ANOVAs01

Null and Alternative Hypotheses
Null and Alternative Hypotheses

power point file
power point file

ANOVA: Analysis of Variation
ANOVA: Analysis of Variation

Comparing Means in Two Populations
Comparing Means in Two Populations

Wilcoxon sum
Wilcoxon sum

Estimation V
Estimation V

Course Notes - LISA (Virginia Tech`s Laboratory for
Course Notes - LISA (Virginia Tech`s Laboratory for

< 1 ... 8 9 10 11 12 13 14 15 16 ... 41 >

Omnibus test

Omnibus tests are a kind of statistical test. They test whether the explained variance in a set of data is significantly greater than the unexplained variance, overall. One example is the F-test in the analysis of variance. There can be legitimate significant effects within a model even if the omnibus test is not significant. For instance, in a model with two independent variables, if only one variable exerts a significant effect on the dependent variable and the other does not, then the omnibus test may be non-significant. This fact does not affect the conclusions that may be drawn from the one significant variable. In order to test effects within an omnibus test, researchers often use contrasts.In addition, Omnibus test is a general name refers to an overall or a global test and in most cases omnibus test is called in other expressions such as: F-test or Chi-squared test.Omnibus test as a statistical test is implemented on an overall hypothesis that tends to find general significance between parameters' variance, while examining parameters of the same type, such as:Hypotheses regarding equality vs. inequality between k expectancies µ1=µ2=…=µk vs. at least one pair µj≠µj' , where j,j'=1,...,k and j≠j', in Analysis Of Variance(ANOVA); or regarding equality between k standard deviations σ1= σ2=….= σ k vs. at least one pair σj≠ σj' in testing equality of variances in ANOVA; or regarding coefficients β1= β2=….= βk vs. at least one pair βj≠βj' in Multiple linear regression or in Logistic regression.Usually, it tests more than two parameters of the same type and its role is to find general significance of at least one of the parameters involved.Omnibus tests commonly refers to either one of those statistical tests: ANOVA F test to test significance between all factor means and/or between their variances equality in Analysis of Variance procedure ; The omnibus multivariate F Test in ANOVA with repeated measures ; F test for equality/inequality of the regression coefficients in Multiple Regression; Chi-Square test for exploring significance differences between blocks of independent explanatory variables or their coefficients in a logistic regression.Those omnibus tests are usually conducted whenever one tends to test an overall hypothesis on a quadratic statistic (like sum of squares or variance or covariance) or rational quadratic statistic (like the ANOVA overall F test in Analysis of Variance or F Test in Analysis of covariance or the F Test in Linear Regression, or Chi-Square in Logistic Regression).While significance is founded on the omnibus test, it doesn't specify exactly where the difference is occurred, meaning, it doesn't bring specification on which parameter is significally different from the other, but it statistically determine that there is a difference, so at least two of the tested parameters are statistically different. If significance was met, none of those tests will tell specifically which mean differs from the others (in ANOVA), which coefficient differs from the others (in Regression) etc.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report