• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Database Management Systems (COSC 340H)
Database Management Systems (COSC 340H)

Data Mining in Contracook
Data Mining in Contracook

... functional recommendations and searches for restaurants. The data for our ‘data mining’ is actually designed into the database, making it a more simple form of data analysis, and more closely resembles ‘data dredging.’ An algorithm will be in place to logically make use of the designed data fields, ...
Data Analysis and Manifold Learning - Perception
Data Analysis and Manifold Learning - Perception

... review principal component analysis (PCA) and multidimensional scaling (MDS) and we will then turn our attention towards graph-based methods. We will formally introduce undirected weighted graphs as a convenient representation of the data and we will concentrate on the study of these graphs based o ...
Huge amounts of loosely structured and high velocity data are now
Huge amounts of loosely structured and high velocity data are now

What is Pattern Recognition?
What is Pattern Recognition?

... Largely divided into supervised learning and unsupervised learning. It aims to classify data based on a priori knowledge or on statistical information extracted from the patterns. The pattern classified are groups of measurements or observations, defining points in a multidimensional space. ...
INFS 6510 – Competitive Intelligence Systems
INFS 6510 – Competitive Intelligence Systems

The goal of data mining is to extract knowledge, dependencies and
The goal of data mining is to extract knowledge, dependencies and

... clustering, kmeans method and its fuzzy modification. The work also includes data pre-processing techniques, which are very important in order to obtain better results of data mining process. Experimental part of the work compares the presented methods by means of the results of many tests on real-w ...
Principles of Data Mining. (2001) David Hand, Heikki Mannila, and
Principles of Data Mining. (2001) David Hand, Heikki Mannila, and

... MIT Press, Cambridge, Massachusetts. ISN 0-262-08290-X Data mining is the science of extracting useful information from large data sets. It is a relatively new discipline, lying at the intersection of statistics, machine learning, database technology, pattern recognition, artificial intelligence, an ...
Course Helper: A Course Recommendation System
Course Helper: A Course Recommendation System

... • O(n*k) where n is the number of courses in history and k is the average branching factor (30 in practice for the data I was using) ...
Isometric Projection
Isometric Projection

Algorithms For Data Processing
Algorithms For Data Processing

...  Side note: in 2007 D. Arthur and S.Vassilvitskii developed k-mean++ ...
< 1 ... 501 502 503 504 505

Nonlinear dimensionality reduction



High-dimensional data, meaning data that requires more than two or three dimensions to represent, can be difficult to interpret. One approach to simplification is to assume that the data of interest lie on an embedded non-linear manifold within the higher-dimensional space. If the manifold is of low enough dimension, the data can be visualised in the low-dimensional space.Below is a summary of some of the important algorithms from the history of manifold learning and nonlinear dimensionality reduction (NLDR). Many of these non-linear dimensionality reduction methods are related to the linear methods listed below. Non-linear methods can be broadly classified into two groups: those that provide a mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa), and those that just give a visualisation. In the context of machine learning, mapping methods may be viewed as a preliminary feature extraction step, after which pattern recognition algorithms are applied. Typically those that just give a visualisation are based on proximity data – that is, distance measurements.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report