• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Automated Learning and Data Visualization
Automated Learning and Data Visualization

N - DBS
N - DBS

ast3e_chapter12
ast3e_chapter12

Sucking Air: A Partial Review of Nancy Cartwright`s Hunting Causes
Sucking Air: A Partial Review of Nancy Cartwright`s Hunting Causes

Why this book was written, what it`s about, printing and citing the
Why this book was written, what it`s about, printing and citing the

Stacked Ensemble Models for Improved Prediction Accuracy
Stacked Ensemble Models for Improved Prediction Accuracy

Predictable Changes in Yields and Forward Rates*
Predictable Changes in Yields and Forward Rates*

Two-Way ANOVA - Paul Gribble
Two-Way ANOVA - Paul Gribble

... then you should probably ignore the two main effects tests. If the interaction effect is significant, this means that the effect of one factor on the dependent variable is different depending on the level of the other factor. Thus why would you average over the levels of the second factor, knowing t ...
Lecture 9: Numerical solution of boundary value problems
Lecture 9: Numerical solution of boundary value problems

Application of Random-Effects Pattern
Application of Random-Effects Pattern

8 Instructional Guide Math - Sallie B. Howard School for the Arts and
8 Instructional Guide Math - Sallie B. Howard School for the Arts and

Stats Review
Stats Review

Download Paper
Download Paper

Diagnosing Diabetes Type II Using a Soft Intelligent
Diagnosing Diabetes Type II Using a Soft Intelligent

Bayesian Networks: Learning from Data
Bayesian Networks: Learning from Data

Agile Mind Intensified Algebra I Scope and Sequence, 2015
Agile Mind Intensified Algebra I Scope and Sequence, 2015

Package `conformal`
Package `conformal`

p - HKUST Business School
p - HKUST Business School

Journal of Applied Science and Agriculture The Prediction of
Journal of Applied Science and Agriculture The Prediction of

Multilevel Regression Models
Multilevel Regression Models

... • n individuals observed from each of K schools (total of nK observations) • if Yik= Yjk for all i and j in school k, then knowing k completely determines Y, so there are really only K unique observations • In this case, we can just treat each school as a single observation (with outcome Y.k), and u ...
Universality classes for extreme-value statistics
Universality classes for extreme-value statistics

... should be at least two types of generalizations. One type still concerns independent random variables but with either power-law decay of the distribution (in which case there is a priori no replica formalism), or bounded random variables (the Weibull distribution of extremes), which does not seem to ...
Count Regression Models in SAS®
Count Regression Models in SAS®

dummy A Stata Command to Create Dummy Variables and
dummy A Stata Command to Create Dummy Variables and

Nonlinear Root Finding and a Glimpse at Optimization
Nonlinear Root Finding and a Glimpse at Optimization

Discriminant Analysis
Discriminant Analysis

< 1 ... 15 16 17 18 19 20 21 22 23 ... 79 >

Least squares



The method of least squares is a standard approach in regression analysis to the approximate solution of overdetermined systems, i.e., sets of equations in which there are more equations than unknowns. ""Least squares"" means that the overall solution minimizes the sum of the squares of the errors made in the results of every single equation.The most important application is in data fitting. The best fit in the least-squares sense minimizes the sum of squared residuals, a residual being the difference between an observed value and the fitted value provided by a model. When the problem has substantial uncertainties in the independent variable (the x variable), then simple regression and least squares methods have problems; in such cases, the methodology required for fitting errors-in-variables models may be considered instead of that for least squares.Least squares problems fall into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. The non-linear problem is usually solved by iterative refinement; at each iteration the system is approximated by a linear one, and thus the core calculation is similar in both cases.Polynomial least squares describes the variance in a prediction of the dependent variable as a function of the independent variable and the deviations from the fitted curve.When the observations come from an exponential family and mild conditions are satisfied, least-squares estimates and maximum-likelihood estimates are identical. The method of least squares can also be derived as a method of moments estimator.The following discussion is mostly presented in terms of linear functions but the use of least-squares is valid and practical for more general families of functions. Also, by iteratively applying local quadratic approximation to the likelihood (through the Fisher information), the least-squares method may be used to fit a generalized linear model.For the topic of approximating a function by a sum of others using an objective function based on squared distances, see least squares (function approximation).The least-squares method is usually credited to Carl Friedrich Gauss (1795), but it was first published by Adrien-Marie Legendre.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report