 
									
								
									Deerfield High School / Homepage
									
... What is the difference between static electricity and current electricity? Static electricity is stationary or collects on the surface of an object, whereas current electricity is flowing very rapidly through a conductor. The flow of electricity in current electricity has electrical pressure or vol ...
                        	... What is the difference between static electricity and current electricity? Static electricity is stationary or collects on the surface of an object, whereas current electricity is flowing very rapidly through a conductor. The flow of electricity in current electricity has electrical pressure or vol ...
									Electricity and Magnetism
									
... What is the difference between static electricity and current electricity? Static electricity is stationary or collects on the surface of an object, whereas current electricity is flowing very rapidly through a conductor. The flow of electricity in current electricity has electrical pressure or vol ...
                        	... What is the difference between static electricity and current electricity? Static electricity is stationary or collects on the surface of an object, whereas current electricity is flowing very rapidly through a conductor. The flow of electricity in current electricity has electrical pressure or vol ...
									Launch Activity
									
... If a magnet is suspended from a string, or floated, so that it is free to spin around, it will always end up pointing in a North – South direction. The north pole of the magnet will be attracted by the south pole at the top of the Earth. This is how a compass works. If a two or more compasses are br ...
                        	... If a magnet is suspended from a string, or floated, so that it is free to spin around, it will always end up pointing in a North – South direction. The north pole of the magnet will be attracted by the south pole at the top of the Earth. This is how a compass works. If a two or more compasses are br ...
									ELE 1001: Basic Electrical Technology
									
...  The complete closed path followed by any group of magnetic lines of force is termed as magnetic circuit.  The characteristics of magnetic circuits are analogous with that of electric circuits. ...
                        	...  The complete closed path followed by any group of magnetic lines of force is termed as magnetic circuit.  The characteristics of magnetic circuits are analogous with that of electric circuits. ...
									12-6
									
... For a long time, people knew only one source of magnetism from Iron. In 1821, a Danish physicist, Oersted noticed that an electrical wire carrying current made the near-by compass reorient.  First clue of inter-relation between electricity and Magnetism. Ampere, Faraday established the nature of el ...
                        	... For a long time, people knew only one source of magnetism from Iron. In 1821, a Danish physicist, Oersted noticed that an electrical wire carrying current made the near-by compass reorient.  First clue of inter-relation between electricity and Magnetism. Ampere, Faraday established the nature of el ...
									Exemplar Assignment Brief - An Introduction to Electronics at Level 3
									
... Knowledge of magnetism and electromagnetism is essential in order to underpin futher learning in electrical subjects. In this assessment you will discover how magnetism is used to produce and distribute electricity throughout the country and how the same underlying principles are used in various dif ...
                        	... Knowledge of magnetism and electromagnetism is essential in order to underpin futher learning in electrical subjects. In this assessment you will discover how magnetism is used to produce and distribute electricity throughout the country and how the same underlying principles are used in various dif ...
Force between magnets
Magnets exert forces and torques on each other due to the complex rules of electromagnetism. The forces of attraction field of magnets are due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the material. Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields. The most elementary force between magnets, therefore, is the magnetic dipole–dipole interaction. If all of the magnetic dipoles that make up two magnets are known then the net force on both magnets can be determined by summing up all these interactions between the dipoles of the first magnet and that of the second.It is always more convenient to model the force between two magnets as being due to forces between magnetic poles having magnetic charges 'smeared' over them. Such a model fails to account for many important properties of magnetism such as the relationship between angular momentum and magnetic dipoles. Further, magnetic charge does not exist. This model works quite well, though, in predicting the forces between simple magnets where good models of how the 'magnetic charge' is distributed is available.
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									