• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
1 Chapter 5: Work and Energy (pages 159 182) Dat
1 Chapter 5: Work and Energy (pages 159 182) Dat

Newton`s Laws of Motion
Newton`s Laws of Motion

... The second law is a force applied to an object will produce a change in motion (acceleration) in the direction of the applied force that is directly proportional to the size of the force. The third law is for every action there is an equal and opposite reaction, for example in tennis, when a tennis ...
Sect. 2.7 - TTU Physics
Sect. 2.7 - TTU Physics

Science in motion
Science in motion

... - Friction and Gravity ...
Problem set 13
Problem set 13

... L (α is half the opening angle of the cone swept out by Ω). Express α in terms of θ , the principal moments of inertia and the magnitude of angular momentum L. How does α depend on time and L? (b) h3i Suppose I1 → I3 so that the symmetric top becomes a spherical top. Based on our study of the spheri ...
Newton`s Second Law
Newton`s Second Law

... If an unbalanced force acts on an object then its velocity will change - it will either speed up, slow down, and that includes stopping, or the object will change direction. Newton’s second law explains how this change of velocity, or acceleration, is related to the mass of the body and the force ap ...
111
111

... Part 1: 22 Multiple Choice Questions (1 mark each) Use: The acceleration of gravity g = 10 m/s2 and The universal gravitational constant G = 6.67x10-11 N.m2/kg2. The density of pure water = 1 g/cm3 = 1000 kg/m3 1) Which one of the following terms is used to indicate the natural tendency of an object ...
Math Practice Problems 2nd 8 weeks
Math Practice Problems 2nd 8 weeks

... 3. A person pushes an object with a 50-N force for a total distance of 25-m. What work was done on this object? 4. A 2000-N load was lifted a vertical distance of 6.5-m in 3.2 seconds. How much power was expended when lifting this load? 5. A 125-kg object is moving at a speed of 10.0 m/s. How much k ...
Nature`s Forces, F due to Gravity, and Grav. Field
Nature`s Forces, F due to Gravity, and Grav. Field

... Exercises 4.1 (Forces and Gravity) 1. Define a "force". _____________________________________________________________________________________ 2a Scientists believe that there are only four "natural" forces in the universe. These are: 1)______________________________________ 2) _____________________ ...
SHM notes - Sign in to St. Francis Xavier Catholic School System
SHM notes - Sign in to St. Francis Xavier Catholic School System

... 1. If a mass of 0.55 kg attached to a vertical spring stretches the spring 2.0 cm from its original equilibrium position, what is the spring constant? 2. Suppose the spring from above is replaced with a spring that stretches 36 cm from its equilibrium position. • What is the spring constant? • Is th ...
Chapter 11 Questions/STUDY GUIDE
Chapter 11 Questions/STUDY GUIDE

... velocity of 35 mph when it suddenly runs into a brick wall. What is the velocity of the driver the moment after impact IF the driver is NOT wearing his ...
Conservation of Energy
Conservation of Energy

Slide 1
Slide 1

c hb g - phys114.tk
c hb g - phys114.tk

Welcome to PHY 1151: Principles of Physics I
Welcome to PHY 1151: Principles of Physics I

... potential energy of a 65-kg person on a 3.0-m-high diving board. Let U = 0 be at water level. Example 2: An 82.0-kg mountain climber is in the final stage of the ascent of 4301-m-high Pikes Peak. What is the change in gravitational potential energy as the climber gains the last 100.0 m of altitude? ...
Final Exam Spring 2001 Phy 231 Form 1
Final Exam Spring 2001 Phy 231 Form 1

... ear on the rail. Suppose that the time difference between the arrivals of the two sounds traveling through air and through steel is 3.98 s. If the speed of sound in air was 340 m/s, how far (in km) are the two persons apart? (For steel: Young's modulus is 2.0·1011 N/m2 and the density is 7800 kg/m3) ...
chapter9
chapter9

No questions like this on midterm exam
No questions like this on midterm exam

What is the work done by the two x
What is the work done by the two x

PHY203F08 Exam 3 Name
PHY203F08 Exam 3 Name

... 4.50 kg resting on a horizontal surface. The bullet gets embedded in the block. The speed of the block immediately after the collision A) cannot be found because we don't know whether the surface is frictionless. B) is 0.21 km/s. C) is 65 m/s. D) is 9.3 m/s. E) None of these is correct. 2. Two equal ...
Notes
Notes

October 17
October 17

... ⓑ What fraction of meteor's kinetic energy was transformed to kinetic energy of Earth? ⓒ By how much did Earth kinetic energy change as a result of this collision? ...
Practice exam 2
Practice exam 2

chapter 2 - Extras Springer
chapter 2 - Extras Springer

Document
Document

< 1 ... 317 318 319 320 321 322 323 324 325 ... 437 >

Relativistic mechanics

In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.As with classical mechanics, the subject can be divided into ""kinematics""; the description of motion by specifying positions, velocities and accelerations, and ""dynamics""; a full description by considering energies, momenta, and angular momenta and their conservation laws, and forces acting on particles or exerted by particles. There is however a subtlety; what appears to be ""moving"" and what is ""at rest""—which is termed by ""statics"" in classical mechanics—depends on the relative motion of observers who measure in frames of reference.Although some definitions and concepts from classical mechanics do carry over to SR, such as force as the time derivative of momentum (Newton's second law), the work done by a particle as the line integral of force exerted on the particle along a path, and power as the time derivative of work done, there are a number of significant modifications to the remaining definitions and formulae. SR states that motion is relative and the laws of physics are the same for all experimenters irrespective of their inertial reference frames. In addition to modifying notions of space and time, SR forces one to reconsider the concepts of mass, momentum, and energy all of which are important constructs in Newtonian mechanics. SR shows that these concepts are all different aspects of the same physical quantity in much the same way that it shows space and time to be interrelated. Consequently, another modification is the concept of the center of mass of a system, which is straightforward to define in classical mechanics but much less obvious in relativity - see relativistic center of mass for details.The equations become more complicated in the more familiar three-dimensional vector calculus formalism, due to the nonlinearity in the Lorentz factor, which accurately accounts for relativistic velocity dependence and the speed limit of all particles and fields. However, they have a simpler and elegant form in four-dimensional spacetime, which includes flat Minkowski space (SR) and curved spacetime (GR), because three-dimensional vectors derived from space and scalars derived from time can be collected into four vectors, or four-dimensional tensors. However, the six component angular momentum tensor is sometimes called a bivector because in the 3D viewpoint it is two vectors (one of these, the conventional angular momentum, being an axial vector).
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report