• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
$doc.title

... I  have  an  object  a]ached  to  a  spring,  and   now  I’ve  compressed  it  5cm  from  it’s   equilibrium  point.  Which  way  will  the   mass  move  if  I  let  it  go? ...
Catch a Star 2015 Title: Testing the universal gravitation law to the limit
Catch a Star 2015 Title: Testing the universal gravitation law to the limit

Advanced Physics Semester 2 Final Study Guide Momentum
Advanced Physics Semester 2 Final Study Guide Momentum

... 3. Calculate the electric force between two point charges that are separated by 0.1 m. q1 = +0.2 C and q2 = +0.4 C Felec= k q1q2/r2 Felec = 9.0 x109 Nm2/C2 (0.2C)(0.4 C) /(0.1m)2 = 7.2 x1010 N 4. The electron and proton of a hydrogen atom have an average separation of 5.3 x 10-11 meters. Calculate t ...
Newton*s Second Law
Newton*s Second Law

Midterm #2
Midterm #2

File
File

Physics 130 - University of North Dakota
Physics 130 - University of North Dakota

... Here the minus signs mean gain or loss, not direction. ...
Physics on Deck - Seneca High School
Physics on Deck - Seneca High School

Let`s Pause for Two Questions from the Audience
Let`s Pause for Two Questions from the Audience

... Instantaneous speed = speed calculated over an infinitesimally ...
41Work and E TEST - Mr-Hubeny
41Work and E TEST - Mr-Hubeny

Problem Set 4 Solutions
Problem Set 4 Solutions

posted
posted

Physics 160 Dynamics worksheet 1) Which of Newton`s laws best
Physics 160 Dynamics worksheet 1) Which of Newton`s laws best

Measurments
Measurments

... Thus, in 1967 the SI unit of time, the second, was redefined using the characteristic frequency of a particular kind of cesium atom as the “reference clock.” The basic SI unit of time, the second (s), is defined as 9 192 631 770 times the period of vibration of radiation from the cesium-133 atom ...
Name of Subject (HONORS only)
Name of Subject (HONORS only)

Chapter 1 Two-Body Orbital Mechanics 1.1
Chapter 1 Two-Body Orbital Mechanics 1.1

GO ON TO THE NEXT PAGE. Section I
GO ON TO THE NEXT PAGE. Section I

ExamView - ch 13 Section 3 Energyc.tst
ExamView - ch 13 Section 3 Energyc.tst

Physics Pre-Assessment
Physics Pre-Assessment

Homework #3: Conservation of Energy
Homework #3: Conservation of Energy

... Applying this to the motion of the ball gives 0  m gyi  12 m v2f  0 ...
Chapter 8
Chapter 8

SCIENCE: EIGHTH GRADE CRT FIRST QUARTER
SCIENCE: EIGHTH GRADE CRT FIRST QUARTER

Study Notes
Study Notes

... This replacement is not confined to classical mechanics. It is actually just an application of a fundamental fact from vector calculus that the curl of the gradient of any scalar function is always zero!! In mechanics, the vector is a conservative force and the scalar function is called the potentia ...
Chapter 9
Chapter 9

Exam #1 Aristotle Onward Quantifying motion Question: acceleration
Exam #1 Aristotle Onward Quantifying motion Question: acceleration

< 1 ... 256 257 258 259 260 261 262 263 264 ... 437 >

Relativistic mechanics

In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.As with classical mechanics, the subject can be divided into ""kinematics""; the description of motion by specifying positions, velocities and accelerations, and ""dynamics""; a full description by considering energies, momenta, and angular momenta and their conservation laws, and forces acting on particles or exerted by particles. There is however a subtlety; what appears to be ""moving"" and what is ""at rest""—which is termed by ""statics"" in classical mechanics—depends on the relative motion of observers who measure in frames of reference.Although some definitions and concepts from classical mechanics do carry over to SR, such as force as the time derivative of momentum (Newton's second law), the work done by a particle as the line integral of force exerted on the particle along a path, and power as the time derivative of work done, there are a number of significant modifications to the remaining definitions and formulae. SR states that motion is relative and the laws of physics are the same for all experimenters irrespective of their inertial reference frames. In addition to modifying notions of space and time, SR forces one to reconsider the concepts of mass, momentum, and energy all of which are important constructs in Newtonian mechanics. SR shows that these concepts are all different aspects of the same physical quantity in much the same way that it shows space and time to be interrelated. Consequently, another modification is the concept of the center of mass of a system, which is straightforward to define in classical mechanics but much less obvious in relativity - see relativistic center of mass for details.The equations become more complicated in the more familiar three-dimensional vector calculus formalism, due to the nonlinearity in the Lorentz factor, which accurately accounts for relativistic velocity dependence and the speed limit of all particles and fields. However, they have a simpler and elegant form in four-dimensional spacetime, which includes flat Minkowski space (SR) and curved spacetime (GR), because three-dimensional vectors derived from space and scalars derived from time can be collected into four vectors, or four-dimensional tensors. However, the six component angular momentum tensor is sometimes called a bivector because in the 3D viewpoint it is two vectors (one of these, the conventional angular momentum, being an axial vector).
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report