• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Answer, Key – Homework 4 – David McIntyre – 45123 – Mar 25
Answer, Key – Homework 4 – David McIntyre – 45123 – Mar 25

AQAA2_ch7 Linear Motion
AQAA2_ch7 Linear Motion

science booklet grade 6 - Cairo Modern International School
science booklet grade 6 - Cairo Modern International School

Higher Unit 1
Higher Unit 1

No Slide Title
No Slide Title

5-4 A System of Two Objects and a Pulley
5-4 A System of Two Objects and a Pulley

Newton’s Laws of Motion - Wayne State University
Newton’s Laws of Motion - Wayne State University

1-17 The Universal Law of Gravitation
1-17 The Universal Law of Gravitation

Document
Document

Document
Document

Atoms, Ions and Molecules
Atoms, Ions and Molecules

Monday, Oct. 28, 2002 - UTA HEP WWW Home Page
Monday, Oct. 28, 2002 - UTA HEP WWW Home Page

RP 3P1 Force and Motion - NC Science Wiki
RP 3P1 Force and Motion - NC Science Wiki

... The two kinds of forces we are commonly aware of are gravitational and electromagnetic. Everything in the universe exerts gravitational forces on everything else, although the effects are readily noticeable only when at least one very large mass is involved (such as a star or planet). Gravity is the ...
Chapter 2
Chapter 2

... Balancing a seesaw A balanced seesaw (with riders) is one that experiences no net torque due to gravity, so that it can rotate smoothly. When calculating torque, the gravity of an object can be thought as being exerted at the center of gravity of the object. For smooth rotation the torque caused by ...
Translational Motion
Translational Motion

6.2 Newton`s Second Law
6.2 Newton`s Second Law

Lecture14-10
Lecture14-10

Document
Document

... disrupts the ambient air. On top of a rising parcel, you ‘d expect a high (i.e. a positive pressure perturbation), simply because that rising parcel pushes into its surroundings. The resulting ‘perturbation’ pressure gradient enables compensating lateral and downward displacement as the parcel rises ...
Rotational Motion
Rotational Motion

Chapter 6 - Notes
Chapter 6 - Notes

Newton`s Laws of Motion
Newton`s Laws of Motion

A. Momentum Conservation in Collisions
A. Momentum Conservation in Collisions

... For example, look at figure 7-6 below. Before the rocket is fired, ptotal = 0. As fuel burns, ptotal remains unchanged (ptotal = 0). The backward p of the expelled gas is just balanced by the forward p gained by the rocket. Thus, rockets can accelerate in empty space. ...
COEFFICIENT OF FRICTION
COEFFICIENT OF FRICTION

Ch17 Powerpoint
Ch17 Powerpoint

Work, Energy, and Machines
Work, Energy, and Machines

< 1 ... 75 76 77 78 79 80 81 82 83 ... 229 >

Mass versus weight



In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report