
Effect of Electron–Electron Interaction on Spin Relaxation of Charge
... case when electron–phonon interaction weakly affects spin relaxation. The results obtained are compared with experiment [24] (see preliminary comparison in [30]). We find conditions under which the Hartree–Fock corrections are negligible as compared to the effect of electron–electron collisions on s ...
... case when electron–phonon interaction weakly affects spin relaxation. The results obtained are compared with experiment [24] (see preliminary comparison in [30]). We find conditions under which the Hartree–Fock corrections are negligible as compared to the effect of electron–electron collisions on s ...
271, 31 (2000) .
... result. Above strategy just gives an erroneous result with some probability. Our principal result in Ref. w23x is the matrix inequality which prescribes the bound among the probabilities of correct, error and inconclusive discrimination results. Such bound may have intriguing implications for quantu ...
... result. Above strategy just gives an erroneous result with some probability. Our principal result in Ref. w23x is the matrix inequality which prescribes the bound among the probabilities of correct, error and inconclusive discrimination results. Such bound may have intriguing implications for quantu ...
Symmetry Breaking in Quantum Systems
... The minimum-energy classical conguration is a uniform eld φ(x ) = φ0 , with φ0 chosen to minimize the potential ...
... The minimum-energy classical conguration is a uniform eld φ(x ) = φ0 , with φ0 chosen to minimize the potential ...
3. Applications of the equation
... in a coil generates current. Reciprocating it, Faraday discovered that time varying magnetic field generates electric field. It was Maxwell who synthesized all discovered equations of electricity and magnetism to generate light. Later on, Einstein’s relativity became a bridge between electricity and ...
... in a coil generates current. Reciprocating it, Faraday discovered that time varying magnetic field generates electric field. It was Maxwell who synthesized all discovered equations of electricity and magnetism to generate light. Later on, Einstein’s relativity became a bridge between electricity and ...
A model of interacting partons for hadronic structure functions
... The parton model was proposed by Bjorken, Feynman and others [2] as a simple explanation of scaling in Deep Inelastic Scattering. The proton was thought of as being made of point-like constituents called partons. These were identified with the quarks which were until then, hypothetical particles. St ...
... The parton model was proposed by Bjorken, Feynman and others [2] as a simple explanation of scaling in Deep Inelastic Scattering. The proton was thought of as being made of point-like constituents called partons. These were identified with the quarks which were until then, hypothetical particles. St ...
The inequality of charge and spin diffusion coefficients
... typically assume so. Here, we show analytically that the two diffusion coefficients can be vastly different in quantum wires. Although we do not consider quantum wells or bulk systems, it is likely that the two coefficients will be different in those systems as well. Thus, it is important to disting ...
... typically assume so. Here, we show analytically that the two diffusion coefficients can be vastly different in quantum wires. Although we do not consider quantum wells or bulk systems, it is likely that the two coefficients will be different in those systems as well. Thus, it is important to disting ...
Computer simulated thermal energy atomic
... position at t 0, r is the standard deviation, i is the complex unit, k is the wave number vector and r is the position vector. Because the present paper focuses on dierent model calculations of atomic beam scattering; special interaction potentials are applied for describing the interaction betwe ...
... position at t 0, r is the standard deviation, i is the complex unit, k is the wave number vector and r is the position vector. Because the present paper focuses on dierent model calculations of atomic beam scattering; special interaction potentials are applied for describing the interaction betwe ...
Document
... A. An interaction between the spins of two electrons located at different orbits B. The spin of an electron interacting with the spin of the nucleus ...
... A. An interaction between the spins of two electrons located at different orbits B. The spin of an electron interacting with the spin of the nucleus ...
diatomic molecular spectroscopy with standard and anomalous
... In modern notation, approximate diatomic angular momentum states are represented by elements of the rotation matrix, DMJ *Ω ( αβγ ) , which carry two magnetic quantum numbers, one more than allowed by the nature of angular momentum. Only J2 and one of its components, by usual convention Jz , commute ...
... In modern notation, approximate diatomic angular momentum states are represented by elements of the rotation matrix, DMJ *Ω ( αβγ ) , which carry two magnetic quantum numbers, one more than allowed by the nature of angular momentum. Only J2 and one of its components, by usual convention Jz , commute ...
Simulating a simple Quantum Computer
... By a "correct" answer bit we mean, if the input to the computer was the binary digit x then, when the cursor bit was found to be in its terminal (i.e. third) position, the output memory register bit was NOT(x) By an "uncorrupted" cursor we mean at those prior times when the cursor was measured and f ...
... By a "correct" answer bit we mean, if the input to the computer was the binary digit x then, when the cursor bit was found to be in its terminal (i.e. third) position, the output memory register bit was NOT(x) By an "uncorrupted" cursor we mean at those prior times when the cursor was measured and f ...
Spinons and triplons in spatially anisotropic frustrated antiferromagnets ARTICLES MASANORI KOHNO
... scattering data which extends over this full range15 . The two-spinon states of a single chain are characterized by two continuous quantum numbers, which can be thought of either as the momenta k x1 , k x2 of the individual (unbound) spinons, or equivalently, the total momentum k x = k x1 + k x2 and ...
... scattering data which extends over this full range15 . The two-spinon states of a single chain are characterized by two continuous quantum numbers, which can be thought of either as the momenta k x1 , k x2 of the individual (unbound) spinons, or equivalently, the total momentum k x = k x1 + k x2 and ...
Section 1 A Particle Model of Waves: Practice Problems
... Quantized energy means that energy can exist only in whole number multiples of some minimum value. 35. What quantity is quantized in Max Planck’s interpretation of the radiation emitted by objects? SOLUTION: The vibrational energy of the incandescent atoms is quantized. 36. BIG IDEA What is a quan ...
... Quantized energy means that energy can exist only in whole number multiples of some minimum value. 35. What quantity is quantized in Max Planck’s interpretation of the radiation emitted by objects? SOLUTION: The vibrational energy of the incandescent atoms is quantized. 36. BIG IDEA What is a quan ...
Electric and Magnetic Tuning Between the Trivial and Topological Phases
... perpendicular electric field Ez , which shifts the electron and the hole bands relatively to each other in energy by ΔE ¼ eEz hzi (hzi is the average separation of the electron and hole gases), and the position of the Fermi level EF . The resulting trivial-topological phase diagram is shown in Fig. ...
... perpendicular electric field Ez , which shifts the electron and the hole bands relatively to each other in energy by ΔE ¼ eEz hzi (hzi is the average separation of the electron and hole gases), and the position of the Fermi level EF . The resulting trivial-topological phase diagram is shown in Fig. ...
Three Quantum Algorithms to Solve 3-SAT
... n–registers can be represented as order 2n square matrices of complex entries. Usually (but not in this paper) such operators, as well as the corresponding matrices, are required to be unitary. In particular, this implies that the implemented operations are logically reversible (an operation is logi ...
... n–registers can be represented as order 2n square matrices of complex entries. Usually (but not in this paper) such operators, as well as the corresponding matrices, are required to be unitary. In particular, this implies that the implemented operations are logically reversible (an operation is logi ...
Hydrogen atom
A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the elemental (baryonic) mass of the universe.In everyday life on Earth, isolated hydrogen atoms (usually called ""atomic hydrogen"" or, more precisely, ""monatomic hydrogen"") are extremely rare. Instead, hydrogen tends to combine with other atoms in compounds, or with itself to form ordinary (diatomic) hydrogen gas, H2. ""Atomic hydrogen"" and ""hydrogen atom"" in ordinary English use have overlapping, yet distinct, meanings. For example, a water molecule contains two hydrogen atoms, but does not contain atomic hydrogen (which would refer to isolated hydrogen atoms).