Download Proposal to change linear sequence of orders to place Galliformes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of genetic engineering wikipedia , lookup

Gene wikipedia , lookup

Human genome wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

DNA barcoding wikipedia , lookup

Microevolution wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

NUMT wikipedia , lookup

Non-coding DNA wikipedia , lookup

Point mutation wikipedia , lookup

RNA-Seq wikipedia , lookup

Extrachromosomal DNA wikipedia , lookup

Genomics wikipedia , lookup

Mitochondrial DNA wikipedia , lookup

Helitron (biology) wikipedia , lookup

Quantitative comparative linguistics wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Maximum parsimony (phylogenetics) wikipedia , lookup

Metagenomics wikipedia , lookup

Computational phylogenetics wikipedia , lookup

Transcript
Proposal (#6) to South American Classification
Committee
Change linear sequence of orders to place
Galliformes and Anseriformes after Tinamiformes
Synopsis: An accumulating body of independent evidence indicates
that the (1) the Galliformes and Anseriformes are sister taxa, and (2)
they represent the earliest branch in the living class Aves after the
palaeognaths. These two orders have traditionally been separated by
the Falconiformes and placed after a group of orders (Gaviiformes to
Ciconiiformes) that almost certainly appeared later in avian evolution.
To maintain these two orders in their traditional places in linear
sequences obscures patterns of avian evolution.
Background: See Sibley-Ahlquist (1990) tome for an unsynthesized
compilation of pre-1990 literature. I noted that although Beddard's 1898
review concluded that both (1) and (2) above were correct, this was not
generally recognized, and it seems that the current linear sequence has
been maintained in most classifications for most of the 20th Century. A
study of cranial morphology led Simonetta (1963) to suggest a sister
relation between Anseriformes and Galliformes. But I think it was Sibley
and Ahlquist's results (1990) that provided the first prominently
recognized genetic data for this relationship and the basal origin of the
two orders. We did not make this change in AOU (1998) because we
require multiple independent data sets to revise at the family/order level,
especially one that affects linear sequence so radically.
New data: Now we have multiple independent data-sets that support
the original Sibley-Ahlquist finding. Here's a quote from Cracraft (2001;
Proc. Royal Soc. London 268: 459-469):
"There is compelling evidence from immunological distances (Ho et al.
1976), amino-acid sequences from conservative alpha crystallin genes
(Caspers et al. 1997), DNA hybridization (Sibley & Ahlquist 1990),
whole and partial mitochondrial gene sequences (Mindell et al. 1997;
Van Tuinen et al. 2000), nuclear gene sequences (Groth &
Barrowclough 1999) and morphological characters (Cracraft 1988;
Dzerhinsky 1995, Livezey 1997; Cracraft & Clark 2001) that the
Galliformes and Anseriformes are each other's closest relative (united in
a group called Galloanserae) and are the basal sister group to all
remaining neognaths, the Neoaves (see Cracraft & Clarke [2001] for a
review)."
Two parts of this proposal require separate evaluation:
1. Sister relationship of Galliformes and Anseriformes: I am unable to
find any recent data set that refutes this. In addition to the papers cited
by Cracraft, Harshman's (1994) reanalyses of the Sibley-Ahlquist DNA
hybridization data supported their original finding. Waddell et al.'s (1999)
analysis of mtDNA sequences supported the sister relationship of
duck+chicken (compared to rhea, ostrich, falcon, and passerine). Zusi
and Livezey (2000)'s analysis of cranial morphology supported this
relationship (and explained problems in previous analyses that did not
find this relationship). Johnson's (2001) analysis of cytochrome b
supported the Galliformes-Anseriformes clade to the exclusion of 703
species of birds from an exceptional range of families and orders. Müller
and Weber's (1998) analysis of tongue musculature also supported the
sister relationship of Galliformes and Anseriformes. Ericson's (1997)
analysis of osteological characters was ambiguous: he was unable to
corroborate their sister relationship but also was unable to refute it.
2. Basal position in Neognaths: Support for this is not as solid. Mindell
et al. (1997), Härlid et al. (1998), Waddell et al. (1999), and Johnson et
al. (2001) found that Passeriformes were basal to all Neognaths or even
all living birds. These studies can be faulted, as the authors themselves
often pointed out, for combinations of limited taxon sampling, rooting the
tree with distantly related alligator sequence, or assuming equal rates of
mtDNA evolution within lineages. The analysis of van Tuinen et al.
(2000) showed very strong support for the Galloanserae as the sister to
all other Neognathae. They used complete mitochondrial gene
sequences from 3 genes from 41 taxa spanning a broad taxonomic
range, and also sequence data from a nuclear gene from
representatives of 32 taxa (including all avian orders); thus their
analysis stands apart from the others in depth and breadth of sampling.
They also explained why the paraphyly of the neognaths found by the
Mindell lab was an artifact of poor taxon sampling. Also, Zusi and
Livezey (2000)'s analysis of cranial morphology supported a basal
position of the Galloanserae. These studies, in conjunction with the
studies cited by Cracraft, in my opinion provide sufficient evidence for
the basal position of the Galloanserae.
Recommendation: I am by no means an expert on higher-level
phylogeny. With varying degrees of misunderstanding, I recognize that
all the studies above can be faulted to varying degrees for incomplete
taxon sampling, tree-rooting problems, failure to provide bootstrap
support, use of only one analytical paradigm (parsimony vs. likelihood),
problems in character-coding, etc. Yet, standing on the sidelines, my
view is that it is statistically impossible that so many independent and
heterogeneous analyses would arrive at the same conclusion
(Galloanserae clade) by chance or artifact alone. (Besides, I like the
best-tasting birds all bunched together, early in the sequence; if you've
tasted ostrich or tinamou, you know what I mean.) I am less comfortable
with the basal position of the Galloanserae, but because retaining the
Galloanserae in one of the two linear positions currently occupied by
Anseriformes or Galliformes is not supported by any data other than
tradition, I think that moving them to follow the Tinamiformes is actually
a conservative action, given that it has received major support.
V. Remsen, June 2001
Literature Cited (in part)
Dzerhinsky, R. Y. 1995. Evidence for common ancestry of Galliformes
and Anseriformes. Courier Forsch. Senckenberg 181: 325-336.
Ericson, P. G. P. 1997. Systematic relationships of the Palaeogene
family Presbyornithidae (Aves: Anseriformes). Zool. J. Linn. Soc. 121:
429-483.
Groth, J. G. & G. F. Barrowclough. 1999. Basal divergences in birds and
the phylogenetic utility of the nuclear RAG-1 gene. Mol. Phylogenetics
Evolution 12: 115-123.
Härlid, A., A. Janke, and U. Arnason. 1998. The complete mitochondrial
genome of Rhea americana and early avian divergences. J. Mol. Evol.
46: 669-679.
Harshman, J. 1994. Reweaving the tapestry: what can we learn from
Sibley and Ahlquist (1990)? Auk 111: 377-388.
Johnson, K. P. 2001. Taxon sampling and the phylogenetic position of
Passeriformes: evidence from 916 avian cytochrome b sequences.
Syst. Biol. 50: 128-136.
Livezey, B. C. 1997. A phylogenetic analysis of basal Anseriformes, the
fossil Presbyornis, and the interordinal relationships of waterfowl. Zool.
J. Linn. Soc. 121: 361-428.
Mindell, D. P. et al. 1997. Phylogenetic relationships among and within
select avian orders based on mitochondrial DNA. Pp. 213-247 in Avian
molecular evolution and systematics (D. P. Mindell, ed.). Academic
Press, San Diego.
Mindell, D. P. et al. 1999. Interordinal relationships of birds and other
reptiles based on whole mitochondrial genomes. Syst. Biol. 48: 138152.
Müller, W. and E. Weber. 1998. Re-discovery of a supposedly lost
muscle in palaeognathous birds and its phylogenetic implications. Mitt.
Mus. Nat.kd. Berlin, Zool. Reihe 74: 11-18.
Van Tuinen, M., C. G. Sibley, and S. B. Hedges. 2000. The early history
of modern birds inferred from DNA sequences of nuclear and
mitochondrial ribosomal genes. Mol. Biol. Evol 17: 451-457.
Waddell, P.J. et al. 1999. Assessing Cretaceous superordinal
divergence times within birds and placental mammals by using whole
mitochondrial protein sequences and an extended statistical framework.
Syst. Biol. 119-137.
Zusi, R.L. and B. C. Livezey. 2000. Homology and phylogenetic
implications of some enigmatic cranial features in galliform and
anseriform birds. Annals Carnegie Museum 69: 157-193.
=============
Comments (from Carla Cicero to AOU CLC on same proposal): " Date:
Mon, 11 Feb 2002 15:36:45 -0800
From: Carla Cicero <[email protected]>
AOU CLC I read the Cracraft and Clarke paper on "The basal
clades of modern birds"
over the weekend. The paper primarily analyzes - or
re-analzyes - a suite
of 44 morphologic characters, and discusses those as
well as molecular data
to address 4 major questions. Here's a summary, for what
it's worth:
(1) Monophyly of modern birds, using as outgroups
Ichthyornis, Hesperornis,
and outgroups outside of those fossil clades (they don't
specify) Strongly supported (99%) by 16 derived morphologic
characters, 8 of which
were unambiguously optimized on tree. They also discuss
other morphologic
characters that are now found to be synapomorphic at
other levels. Three
amino acid replacements in alpha-crystallin A are
consistent with
neornithine monophyly.
(2) Monophyly of paleognaths - Strongly supported (100%)
by 5 derived
characters, all unambiguously optimized on tree. They
also discuss other
morphologic characters (previously proposed for
monophyly) that are found
to be synapomorphic at other levels, or where polarity
unclear. Four
molecular data sets support monophyly of paleognaths:
immunological
distances, 2 derived amino acid replacements in
alpha-crystallin A, DNA
hybridization, RAG-1 sequences
(3) Monophyly of neognaths - Strongly supported (100%)
by 11 derived
characters, 6 of which are unambiguously optimized on
tree. Two molecular
data sets consistent with monophyly of neognaths include
2 amino acid
replacements in alpha-crystallin A, and RAG-1 sequences.
(4) Monophyly of Galloanseres - Strongly supported
(100%) by 12 derived
characters, 11 of which are unambiguously optimized on
tree. They also
review synapomorphies postulated by Livezey (1997) to
support monophyly of
Galloanseres (some, not all, incorporated by Cracraft
and Clarke; others
not included pending further comparative analysis within
neognaths and
outgroups). Molecular data that support monophyly
include: immunological
distances, DNA hybridization, DNA sequences from alpha-A
and
alpha-B-crystallin genes, RAG-1 sequences, unpublished
mtDNA and RAG-2
sequences. Furthermore, 3 amino-acid replacements in
alpha-crystallin A are
consistent with a neognath clade that excludes
Galloanseres, and a 5-codon
deletion in RAG-1 also diagnoses this clade.
They state:
"Whereas a sister group relationship between paleognaths
and neognaths is
strongly supported by a variety of data, the basal
divergences of the
neognaths has remained controversial. Recently, however,
interpretations of
both molecular and morphological data have begun to
converge on the
hypothesis that Galliformes and Anseriformes are sister
taxa and are
together the sister group of all other
neognaths...Although no viable
alternative hypothesis...has been put forth, a
monophyletic Galloanseres
has been doubted by some (e.g., Feduccia 1996). In
particular, Ericson
(1996) questioned the validity of many of the
morphological characters
listed above, and in a later study (1997) on the
systematic position of
Presbyornis placed Galliformes as the sister group of
other neognaths and
imbedded the Anseriformes deep within the neognaths in a
clade also
containing ciconiiforms. However, as already noted,
Livezey (1997) examined
many of the same taxa during a parallel study of
Presbyornis, used a much
larger morphological data set than Ericson (1997),
especially for the
skull, and concluded that the morphological evidence
supported a
monophyletic Galloanseres...Thus, a broad suite of data,
from many
independent sources, all point to a monophyletic
Galloanseres. These data
now place a substantial homoplasy burden on all other
hypotheses..."
They go on to talk about problems with rooting and taxon
sampling in
molecular studies. Basically, their conclusion is that
we can confidently
place Galloanseres as sister to a clade of other
neognathes, but
relationships of the latter are still poorly understood.
This is nothing
new, but their paper is a nice summary of the data.
Though Galliformes and Anseriformes may be sister taxa
in a cladistic sense
(i.e., supported by numerous derived morphologic as well
as molecular
characters), which makes them closest living relatives,
they are not
closely related. Nonetheless, in view of the fact that
they have been
evolving independently for a very long time, the number
of characters
shared by these groups is surprising - more so than the
differences between
them.