Download Notes/All Physics IB/Nuclear/Nuclear Physics 7

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Relativistic quantum mechanics wikipedia , lookup

Center of mass wikipedia , lookup

Matter wave wikipedia , lookup

Electromagnetic mass wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Relativistic mechanics wikipedia , lookup

Elementary particle wikipedia , lookup

Nuclear force wikipedia , lookup

Nuclear structure wikipedia , lookup

Atomic theory wikipedia , lookup

Transcript
IB Physics 12
Nuclear Physics Summary
Mr. Jean
Summary
Fundamental atomic and nuclear particles
Particle
Fig. Sym
Mass
Charge
9.11 x 10-31 kg -1.6 x 10-19 C
Size

Electron
e
Proton
p
1.673 x 10-27 kg +1.6 x 10-19 C 3 fm
Neutron
n
1.675 x 10-27 kg
0
3 fm
The mass number A of any element is equal to
the sum of the protons (atomic number Z) and
A=N+Z
the number of neutrons N :
Summary Definitions:
A nucleon is a general term to denote a nuclear
particle - that is, either a proton or a neutron.
The mass number A of an element is equal to the
total number of nucleons (protons + neutrons).
Isotopes are atoms that have the same number
of protons (Z1= Z2), but a different number of
neutrons (N). (A1  A2)
A nuclide is an atom that has a definite mass
number A and Z-number. A list of nuclides will
include isotopes.
Summary (Cont.)
Symbolic notation
for atoms
Mass defect
A
Z
X
Mass number
Atomic number
 Symbol 
mD
mD   ZmH  Nmn   M 
Binding
energy
EB = mDc2 where c2 = 931.5 MeV/u
Binding Energy EB =  MeV 


per nucleon
A
 nucleon 
Summary (Decay Particles)
An alpha particle a is the nucleus of a helium
atom consisting of two protons and two tightly
bound neutrons.
A beta-minus particle b is simply an electron
that has been expelled from the nucleus.
A beta positive particle b is essentially an
electron with positive charge. The mass and
speeds are similar.
A gamma ray g has very high electromagnetic
radiation carrying energy away from the
nucleus.
Summary (Cont.)
Alpha Decay:
A
Z
X
Y  a  energy
A 4
Z 2
4
2
Beta-minus Decay:
A
Z
X
Y  b  energy
A
Z 1
0
1
Beta-plus Decay:
A
Z
X
Y  b  energy
A
Z 1
0
1
Summary (Radioactivity)
The half-life T1/2 of an isotope is the time in
which one-half of its unstable nuclei will decay.
Nuclei Remaining
1
N  N0  
2
n
Mass Remaining
1
m  m0  
2
n
Activity R
1
R  R0  
2
n
Number of Half-lives:
t
n
T12
Summary (Cont.)
Nuclear Reaction: x + X  Y + y + Q
Conservation of Charge: The total charge of a
system can neither be increased nor decreased.
Conservation of Nucleons: The total number of
nucleons in a reaction must be unchanged.
Conservation of Mass Energy: The total massenergy of a system must not change in a
nuclear reaction. (Q-value = energy released)