Download Blood Flow The rate and distribution of blood flow through the

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Management of acute coronary syndrome wikipedia , lookup

Coronary artery disease wikipedia , lookup

Myocardial infarction wikipedia , lookup

Antihypertensive drug wikipedia , lookup

Quantium Medical Cardiac Output wikipedia , lookup

Dextro-Transposition of the great arteries wikipedia , lookup

Transcript
Blood Flow
The rate and distribution of blood flow through the circulatory system is variable and related to
several factors. Physical activity, cardiac output and venus return.
Physical Activity

With exercise, metabolism speeds up and because of this the muscles require more oxygen

So the heart beats faster to supply the muscles with more oxygen-rich blood

In turn the speed of blood flow increases.
Cardiac Output

Due to an increase in heart rate (and stroke volume) to meet demands, cardiac output (the
volume of blood pumped out of the heart in one minute) automatically increases

The faster and harder the heart pumps, the higher the rate of blood circulation.
Venous Return

Venous return is the return of blood to the heart via venules and veins

If this is slow, the volume of blood pumped from the heart with each beat (stroke volume) is
lower

This lowers cardiac output and reduces blood pressure and flow rate.
Blood Pressure
Blood pressure is defined as the force exerted by the blood against the vessel wall. Blood pressure is
highest in arteries and gradually decreases as it passes through arterioles, capillaries, venules and
finally, veins.
Blood pressure is also variable and can increase due to exercise where the cardiac output increases
thus forcing more blood through the arteries or by altering the peripheral resistance. This occurs by
vasoconstriction, increases in blood viscosity (thickness) and changes in shape or size of the vessels.
The regulation of blood pressure is the responsibility of the sympathetic and parasympathetic
nervous systems.
Vasomotor Control
When blood pressure falls sensors called baroreceptors are stimulated which cause a nervous
impulse to be trasmitted to the arterioles, causing them to vasoconstrict, which results in an
increased blood pressure due to the smaller cross sectional area through which the blood can pass.
In reverse, raised blood pressure also stimulates barorecptors which causes impulses directing the
arterioles to vasodilate, increasing the area through which blood can pass and consequently
reducing blood pressure.
Venomotor Control
Veins too can alter their shape in response to stimuli recieved from the sympathetic and
parasympathetic nervous systems. They do not have such a thick muscular wall as arteries although
are capable of increasing the venomotor tone of their walls to alter their shape to increase or
decrease blood pressure, although this is not as effective as the vasodilation/constriction which
occurs in arteries. For this reason veins require some extra help to increase their pressure and return
the blood to the heart.
Venous Return
Venous return (blood returning to the heart) must constitute three fifths of the blood circulating the
body at any time in order to maintain a steady blood flow. At rest this is not a problem, however,
during exercise the blood pressure in the veins is not high enough to increase the level of venous
return and so maintain the higher stroke volume and cardiac output which exercise requires. A
number of mechanisms are used which help to increase venous return:

Pocket Valves: located within the veins prevent the backflow of blood and help it towards
the heart

Muscle Pump: Many veins are situated between skeletal muscles, which when they contract
and relax, squeeze on the veins and help push the blood back towards the heart.

Smooth Muscle: The wall of each vein contains smooth muscle which contracts to help push
the blood back towards the heart

Respiratory Pump: The respiratory pump helps return blood in the thoracic cavity and
abdomen back to the heart. Whilst exercising we breathe faster and deeper which rapidly
changes the pressure within the thorax between high and low to help to squeeze the blood
in the area back to the heart.

Gravity: Veins in the upper body are aided by gravity in order to return blood to the heart.