Download A simple set of rules for primer sequence design is as follows

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

DNA vaccination wikipedia , lookup

Genetic engineering wikipedia , lookup

DNA supercoil wikipedia , lookup

Pathogenomics wikipedia , lookup

Genome evolution wikipedia , lookup

Extrachromosomal DNA wikipedia , lookup

United Kingdom National DNA Database wikipedia , lookup

Genealogical DNA test wikipedia , lookup

DNA polymerase wikipedia , lookup

DNA barcoding wikipedia , lookup

Nucleic acid double helix wikipedia , lookup

Transposable element wikipedia , lookup

RNA-Seq wikipedia , lookup

Primary transcript wikipedia , lookup

Epigenomics wikipedia , lookup

Molecular cloning wikipedia , lookup

Zinc finger nuclease wikipedia , lookup

Cell-free fetal DNA wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Human genome wikipedia , lookup

Genomic library wikipedia , lookup

History of genetic engineering wikipedia , lookup

Gene wikipedia , lookup

Non-coding DNA wikipedia , lookup

Nucleic acid analogue wikipedia , lookup

Designer baby wikipedia , lookup

Cre-Lox recombination wikipedia , lookup

Replisome wikipedia , lookup

Microevolution wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Sequence alignment wikipedia , lookup

Deoxyribozyme wikipedia , lookup

Metagenomics wikipedia , lookup

Point mutation wikipedia , lookup

No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup

Genomics wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

SNP genotyping wikipedia , lookup

Microsatellite wikipedia , lookup

Helitron (biology) wikipedia , lookup

Bisulfite sequencing wikipedia , lookup

Genome editing wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Transcript
Primer Design
The advent of the Polymerase Chain Reaction (PCR) brought about the ability to rapidly
make many copies of a segment of DNA. The PCR reaction depends on short pieces of
DNA, called primers, to bind to the denatured DNA strands and act as a template for
replication. Primers are usually 17-24 nucleotides in length and must be specific to the
target DNA. Listed below are some rules and helpful tools that scientists use in designing
primers. Finally, there are instructions on how to perform a nucleotide BLAST to check
the specificity of each primer. Read through the information and then use these
instructions to complete the Primer Design Exercise.
Primer Length
The optimum length of a primer depends upon its (A+T) content, and the Tm. Apart from
the Tm, a prime consideration is that the primers should be complex enough so that the
likelihood of annealing to sequences other than the chosen target is very low.
For example, there is a ¼ chance of finding an A, G, C or T in any given DNA sequence;
there is a 1/16 chance of finding any dinucleotide sequence (eg. AG); a 1/256 chance of
finding a given 4-base sequence. So, a sixteen base sequence will statistically be present
only once in every 4,294,967,296 bases (or 4 billion): this is about the size of the human
or maize genome, and 1000x greater than the genome size of E. coli. Thus, the
association of a greater-than-17-base oligonucleotide with its target sequence is an
extremely sequence-specific process. Consequently, 17-mer or longer primers are
routinely used for amplification from genomic DNA of animals and plants.
Elongation Temperature and Time
This is normally 70 - 72oC, for 0.5 - 3 min. Taq actually has a specific activity at 37oC
which is very close to that of the Klenow fragment of E. coli DNA polymerase I, which
accounts for the apparent paradox which results when one tries to understand how
primers which anneal at an optimum temperature can then be elongated at a considerably
higher temperature - the answer is that elongation occurs from the moment of annealing,
even if this is transient, which results in considerably greater stability. At around 70oC the
activity is optimal, and primer extension occurs at up to 100 bases/sec. About 1 min is
sufficient for reliable amplification of 2kb sequences (Innis and Gelfand, 1990). Longer
products require longer times: 3 min is a good bet for 3kb and longer products. Longer
times may also be helpful in later cycles when product concentration exceeds enzyme
concentration (>1nM), and when dNTP and / or primer depletion may become limiting.
A simple set of rules for primer sequence design is as follows (adapted from Innis
and Gelfand, 1990):
1. primers should be 17-28 bases in length;
2. base composition should be 50-60% (G+C);
1
3. primers should end (3') in a G or C, or CG or GC: this prevents "breathing" of
ends and increases efficiency of priming;
4. Tms between 55-80oC are preferred;
5. runs of three or more Cs or Gs at the 3'-ends of primers may promote mispriming
at G or C-rich sequences (because of stability of annealing), and should be
avoided;
6. 3'-ends of primers should not be complementary (ie. base pair), as otherwise
primer dimers will be synthesised preferentially to any other product;
7. primer self-complementarity (ability to form 2o structures such as hairpins) should
be avoided.
8. If possible, run a computer search against the vector and insert DNA sequences to
verify that the primer and especially the 8-10 bases of its 3' end are unique.
Calculating Melting Temperatures of primers and target DNA
1. “The Wallace Rule”
Tm (in ºC) = 2(A+T) + 4(C+G)
(A+T) = sum of A and T residues in the primer
(C+G) = sum of C and G residues in the primer
2. DNA calculator
This website will allow you to fill in your primer sequence to determine the length, Tm,
and molecular weight for your primers and if there will be any secondary structures or
possibilities of primer dimers. http://www.sigma-genosys.com/calc/DNACalc.asp
Determining the uniqueness of the primer sequence:
Specificity to the target gene is one of the most important properties of a primer. One
way to determine the uniqueness of the primer sequence is to compare the primer to all
other sequence data using a bioinformatics tool that is a Basic Local Alignment Search
Tool, otherwise known as BLAST.
The BLAST tool is maintained by the National Center for Biotechnology Information
(NCBI) and can be found at the following link: www.ncbi.nlm.nih.gov/BLAST/ . There
are many types of BLASTs, but we will only be dealing with the nucleotide BLAST
(blastn) to determine the specificity of the primers.
1. Go to the above website. Under the heading “Basic BLAST” click on the link
titled “nucleotide BLAST”.
2. Enter the query sequence by typing the primer sequence into the text box.
3. In the “Choose Search Set” box select “nucleotide collection (nr/nt)” from the
Database category.
4. Next type in the organism of interest, in this case we are looking for Bacteria
(P. putida) or Viruses (Cauliflower Mosaic Virus).
5. In the next box, “Program Selection”, select “blastn” as the type of algorithm.
6. Click on the blue BLAST Icon near the bottom of the page.
7. A new page will appear entitled, “Job Title”. This page will update until the
results are available.
2
8. The first figure on the results page provides an overview of the database
sequences that are aligned to the query sequence, which is your primer sequence
in this case. Following the figure is a list of sequences that are significantly
similar to the query sequence. Each matched sequence contains a link to view the
entire sequence, the name of the sequence, a score and an E value.
The Expectation value (E) is a number that describes the number of matches a particular
sequence would get by random chance. The lower the E value, the less likely the match
would happen by chance and thus making the similarity of the query sequence to another
sequence more significant.
When working with short sequences, such as primers, the best way to determine how well
the sequences align is to look at the alignment and the length of homology between the
primer sequence and the hits from the genome database. As long as there are not any
matches in the species you are working in, the primers should amplify only your gene of
interest.
9. Scroll down and see how the base pairs align with the sequence matches of the
same species. If more than 5 matches are found, the primer is not specific enough.
Reaction Buffer
Recommended buffers generally contain:






10-50mM Tris-HCl pH 8.3,
up to 50mM KCl, 1.5mM or higher MgCl2,
primers 0.2 - 1uM each primer,
50 - 200uM each dNTP,
gelatin or BSA to 100ug/ml,
and/or non-ionic detergents such as Tween-20 or Nonidet P-40 or Triton X100 (0.05 - 0.10% v/v)
(Innis and Gelfand, 1990). Modern formulations may differ considerably, however - they
are also generally proprietary.
Higher than 50mM KCl or NaCl inhibits Taq, but some is necessary to facilitate
primer annealing.
[Mg2+] affects primer annealing; Tm of template, product and primer-template
associations; product specificity; enzyme activity and fidelity. Taq requires free Mg2+, so
allowances should be made for dNTPs, primers and template, all of which chelate and
sequester the cation; of these, dNTPs are the most concentrated, so [Mg2+] should be 0.5 2.5mM greater than [dNTP]. A titration should be performed with varying [Mg2+] with
3
all new template-primer combinations, as these can differ markedly in their requirements,
even under the same conditions of concentrations and cycling times/temperatures.
Some enzymes do not need added protein, others are dependent on it. Some enzymes
work markedly better in the presence of detergent, probably because it prevents the
natural tendency of the enzyme to aggregate.
Primer concentrations should not go above 1uM unless there is a high degree of
degeneracy; 0.2uM is sufficient for homologous primers.
Nucleotide concentration need not be above 50uM each: long products may require
more, however.
Cycle Number
The number of amplification cycles necessary to produce a band visible on a gel depends
largely on the starting concentration of the target DNA. The plateau effect, is the
attenuation in the exponential rate of product accumulation in late stages of a PCR, when
product reaches 0.3 - 1.0 nM. This may be caused by degradation of reactants (dNTPs,
enzyme); reactant depletion (primers, dNTPs - former a problem with short products,
latter for long products); end-product inhibition (pyrophosphate formation); competition
for reactants by non-specific products; competition for primer binding by re-annealing of
concentrated (10nM) product (Innis and Gelfand, 1990).
If desired product is not made in 30 cycles, take a small sample (1ul) of the amplified mix
and re-amplify 20-30x in a new reaction mix rather than extending the run to more
cycles: in some cases where template concentration is limiting, this can give good
product where extension of cycling to 40x or more does not.
Innis MA and Gelfand DH (1990). Optimization of PCRs. pp. 3-12 in: PCR Protocols
(Innis, Gelfand, Sninsky and White, eds.); Academic Press, New York.
4
Primer Design Exercise
Currently Monsanto owns the patent on glyphosate, which is commonly known as
Roundup®. It is the most popular herbicide used today because it kills a broad spectrum
of weeds and is easily broken down into non-toxic compounds. The catch is that
Monsanto also owns the patent on the gene that confers resistance to glyphosate, which
they have transformed into several crops such as corn and soybean to make them
“Round-up Ready”, or resistant to glyphosate. Many researchers are trying to find novel
genes that will also confer resistance to glyphosate for both evolutionary and economic
reasons. Recently, a Chinese group found a bacterium, Pseudomonas putida strain 4G-1,
which is naturally resistant to glyphosate1. They have cloned the novel gene, aroA, that is
significantly different in sequence from the previous AroA gene, and are hopeful that it
will be another source of glyphosate resistance.
The AroA gene encodes the enzyme 3-phosphoshikimate 1-carboxyvinyltransferase,
which plays a key role in the biosynthesis of aromatic amino acids. Glyphosate works by
disrupting this enzyme and thus the biosynthesis of aromatic amino acids. Resistance is
found by mutating the AroA gene such that glyphosate cannot bind to the resulting
protein.
You have just been hired to select strains of Pseudomonas putida with the new aroA gene
to provide a new glyphosate resistant cultivar. Your first challenge will be to create
primer pairs (forward and reverse) that will amplify a portion of the aroA gene that
contains the underlined region (see sequence below).
1. Given the sequence on the following page, choose forward and reverse primers that
will amplify the underlined portion of the aroA gene.
a. Underline the primer sequence on the following page. Then write out your primers
below and indicate the 5’ and 3’ ends. Remember that the 3’ or reverse primer is the
reverse complement of the template (think about which direction DNA extends).
b. What is the size of your target DNA? (Note: each line contains 70 nucleotide bases)
1
Sun, Y. et al. 2005. Novel AroA with high tolerance to glyphosate, encoded by a gene of Pseudomonas
putida 4G-1 isolated from an extremely polluted environment in China. Applied and Environmental
Microbiology. 71 (8): 4771-4776
5
>gi|51587624|emb|AJ812018.1| Pseudomonas putida aroA gene for 3phosphoshikimate 1-carboxyvinyltransferase
5’GATCATAAAACATGCTTGTATAAAGGATGCTGCCATGTTCCGTGAACTGGAAGCGAACAATCTTGCGGTA
TATCAGAAAAAGCCAAAGCTGATTGCAGTGCTTCTTCAGCGTAATGCTCAGTTAAAAGCGAAGGTTGTTC
AGGAGGATGAGTTCGAAAAGTCGGTAAGGCGTTTGTTGAACTTTGGTCATACATTGGGGCATGCCATCGA
AAATGAATATGCGTTGATGCATGGCCATGCGGTTGCTATAGGAATGACATACGCGTGTCATATTTCTGAG
CAATTGTCTGGATTCAAACAAACAAATCGCGTGGTAGAAGTGTTGGAACAATATGGGTTACCGACTTATA
TGGCATTCGATAGGGAAAAGGCTTTTAATCTGTTGAAAATGGACAAGAAGCGTGAAAAAAAGGAAATGAA
CTATGTGTTGCTGGAAAAAGTAGGGAAGGGAGTGGTGAAGAGTATTCCACTGGTTCAATTAGAAAAAATC
ATTCAAGCATTACCAAAGTGAAAGTAACAATACAGCCCGGAGATCTGACTGGAATTATCCAGTCACCCGC
TTCAAAAAGTTCGATGCAGCGAGCTTGTGCTGCTGCACTGGTTGCAAAAGGAATAAGTGAGATCATTAAT
CCCGGTCATAGCAATGATGATAAAGCTGCCAGGGATATTGTAAGCCGGCTTGGTGCCAGGCTTGAAGATC
AGCCTGATGGTTCTTTGCAGATAACAAGTGAAGGCGTAAAACCTGTCGCTCCTTTTATTGACTGCGGTGA
ATCTGGTTTAAGTATCCGGATGTTTACTCCGATTGTTGCGTTGAGTAAAGAAGAGGTGACGATCAAAGGA
TCTGGAAGCCTTGTTACAAGACCAATGGATTTCTTTGATGAAATTCTTCCGCATCTCGGTGTAAAAGTTA
AATCTAACCAGGGTAAATTGCCTCTCGTTATACAGGGGCCATTGAAACCAGCAGACGTTACGGTTGATGG
GTCCTTAAGCTCTCAGTTCCTTACAGGTTTGTTGCTTGCATATGCGGCCGCAGATGCAAGCGATGTTGCG
ATAAAAGTAACGAATCTCAAAAGCCGTCCGTATATCGATCTTACACTGGATGTGATGAAGCGGTTTGGTT
TGAAGACTCCCGAGAATCGAAACTATGAAGAGTTTTATTTCAAAGCCGGGAATGTATATGATGAAACGAA
AATGCAACGATACACCGTAGAAGGCGACTGGAGCGGTGGTGCTTTTTTACTGGTAGCGGGGGCTATTGCC
GGGCCGATCACGGTAAGAGGTTTGGATATAGCTTCGACGCAGGCTGATAAAGCGATCGTTCAGGCTTTGA
TGAGTGCGAACGCAGGTATTGCGATTGATGCAAAAGAGATCAAACTTCATCCTGCTGATCTCAATGCATT
TGAATTTGATGCTACTGATTGCCCGGATCTTTTTCCGCCATTGGTTGCTTTGGCGTCTTATTGCAAAGGA
GAAACAAAGATCAAAGGCGTAAGCAGGCTGGCGCATAAAGAAAGTGACAGAGGATTGACGCTGCAGGACG
AGTTCGGGAAAATGGGTGTTGAAATCCACCTTGAGGGAGATCTGATGCGCGTGATCGGAGGGAAAGGCGT
AAAAGGAGCTGAAGTTAGTTCAAGGCACGATCATCGCATTGCGATGGCTTGCGCGGTGGCTGCTTTAAAA
GCTGTGGGTGAAACAACCATCGAACATGCAGAAGCGGTGAATAAATCCTACCCGGATTTTTACAGCGATC
TTAAACAACTTGGCGGTGTTGTATCTTTAAACCATCAATTTAATTTCTCATGAATAGCTTCGGCCGCATC
TTCAGGGTGCATATTTTTGGCGAATCACATGGTGAATCAGTAGGCATCGTTATTGATGGTTGTCCTGCTG
GTCTGTCATTGTCCGAAGAAGATC-3’
2. For each primer you designed, use the website and the guidelines on the instruction
sheet to determine whether they meet the basic primer requirements. Record the Tm,
length, molecular weight, and possibility of secondary structures or primer dimers and
use the statistics to qualify your decision to use or not use the primers for a PCR reaction.
6
3. To determine the specificity of your primer pair to the aroA sequence, run a nucleotide
BLAST by following the directions on the instruction page.
a. What does the E-value indicate? What is another way to determine homology
between two sequences?
b. Write down the organism and E-value score from the two highest matches
for each primer sequence. Did you get back the sequence you put in?
c. How many nucleotides aligned between your sequences and the first
match for each?
7