Download Linear Circuit

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lecture 10
Capacitor and Inductor
Hung-yi Lee
Outline
• Capacitor (Chapter 5.1)
• Inductor (Chapter 5.2)
• Comparison of Capacitor and Inductor
• Superposition for Dynamic Circuits
Outline
• Capacitor (Chapter 5.1)
• Inductor (Chapter 5.2)
• Comparison of Capacitor and Inductor
• Superposition for Dynamic Circuits
Capacitor – i-v characteristics
Dynamic
i (t )
v(t )
dv(t )
i (t )  C
dt
reference current should
flow from “+” to “-”
If v is constant
i=0
Open circuit
1 t
1 t
v(t )   i  d  vt0    i  d
C 
C t0
Capacitor – i-v characteristics
vt 
dv(t )
i (t )  C
dt
Continuity - Capacitor
dv(t )
i (t )  C
dt
• The voltage of capacitor should be continuous
Infinite
current
Current
changes
Capacitor – Power and Energy
Instantaneous consumed
power of a capacitor:
vc (t )
dvc (t )
p (t )  vc (t )  ic (t )  Cvc (t )
dt
Total energy consumed:
ic (t )
dvc t 
E t    pt dt   Cvc t 
dt


dt
p (t )
t
t
1 2
 Cvc (t )
2
The energy stored
Depend on
voltage at t
E(t )
Capacitor - Application
• Automated external defibrillators (AED)
Capacitor - Application
• Automated external defibrillators (AED)
vc (t )  5000
vc (t )  0
5000V
1 2
1
E  Cvc (t )  C  5000 2
2
2
1 2
E  Cvc (t )  0
2
Capacitor - Series
v  v1  v2    v N
dv N
dv1
dv2
i  C1
 C2
   C N
dt
dt
dt
Cser 
1
1
1
1

  
C1 C2
CN
dv d v1  v2    v N 

dt
dt
dv N
dv1 dv2


  
dt
dt
dt
 1
1
1 
  i
  
  
CN 
 C1 C2
1
dv

i
i  Cser
Cser
dt
Capacitor - Parallel
Cpar=C1+C2+ ‥ ‥ ‥+CN
i  i1  i2    iN
dv
dv
dv
 C2
   C N
dt
dt
dt
dv
 C1  C2    C N 
dt
dv
 C par
dt
 C1
Outline
• Capacitor (Chapter 5.1)
• Inductor (Chapter 5.2)
• Comparison of Capacitor and Inductor
• Superposition for Dynamic Circuits
Inductor – i-v characteristics
Dynamic
i (t )
di (t )
v(t )  L
dt
If i=constant
reference current should
flow from “+” to “-”
v=0
v(t )
short circuit
1 t
1 t
i (t )   v d  i t0    v d
L 
L t0
Inductor – i-v characteristics
i t 
di (t )
v(t )  L
dt
Continuity - Inductor
di (t )
v(t )  L
dt
• The current of inductor should be continuous
Infinite
Voltage
Voltage
changes
Shock by Inductor
http://www.allaboutcircuits.com/worksheets/ind.html
Inductor – Power and Stored
Energy
• Instantaneous consumed power of an inductor
diL (t )
p ( t )  v L ( t )  iL ( t )  L
 iL ( t )
dt
• Total Energy consumed
diL t 
E t    pt dt   L
iL t dt


dt
t
1 2
 LiL (t )
2
The energy stored
t
Depend on
current at t
Inductor - Series
v  v1  v2    v N
di
di
di
 L1  L2    LN
dt
dt
dt
di
 L1  L2    LN 
dt
di
 Lser
dt
Lser=L1+L2+ ‥ ‥ ‥+LN
Inductor - Parallel
i  i1  i2    iN
diN
di1
di2
v  L1
 L2
   LN
dt
dt
dt
L par 
1
1 1
1
   
L1 L2
LN
di d i1  i2    iN 

dt
dt
diN
di1 di2


  
dt dt
dt
1 1
1 
  v
     
LN 
 L1 L2

1
v
L par
v  L par
di
dt
Outline
• Capacitor (Chapter 5.1)
• Inductor (Chapter 5.2)
• Comparison of Capacitor and Inductor
• Superposition for Dynamic Circuits
Summary - i-v characteristics
dv(t )
i (t )  C
dt
愛
C
V
di (t )
v(t )  L
dt
V
L
愛
Summary - Series and Parallel
Resistor
Capacitor
Inductor
Series
R s   Ri
1
1

Cs
Ci
L s   Li
Parallel
1
1

Rp
Ri
C p   Ci
1
1

Lp
Li
i-v
v(t )  Rit 
dv(t )
i (t )  C
dt
di (t )
v(t )  L
dt
Outline
• Capacitor (Chapter 5.1)
• Inductor (Chapter 5.2)
• Comparison of Capacitor and Inductor
• Superposition for Dynamic Circuits
Review
y   ai xi
This equation only for circuits
with sources and resistors.
i
•
•
y: any current or voltage for an element
xi: current of current sources or voltage of voltage sources
Proportionality Principle, Superposition Principle
Can be used in any circuit in this course
Linearity
• A circuit is a multiple-input multiple-output (MIMO)
system
• Input: current of current sources or voltage of voltage
sources
• Output: the current or voltage for the elements
input
Circuit
(System)
+
v
-
i
output
Linearity
• All linear circuits are linear system
• Linear Circuit:
• Sources
• Linear Elements:
• Resistor, Capacitor, Inductor
v
i
R
All circuits in
this course are
linear circuits.
Linearity
• Linear System:
• Property 1:
Input: g1(t), g2(t), g3(t), ……
output: h1(t), h2(t), h3(t), ……
Input: Kg1(t), Kg2(t), Kg3(t), ……
output: Kh1(t), Kh2(t), Kh3(t), ……
Proportionality Principle
Linearity
• Linear System:
• Property 2:
Input: a1(t), a2(t), a3(t), ……
output: x1(t), x2(t), x3(t), ……
Input: b1(t), b2(t), b3(t), ……
output: y1(t), y2(t), y3(t), ……
Input: a1(t)+ b1(t), a2(t)+ b2(t), a3(t)+ b3(t), ……
output: x1(t)+y1(t), x2(t)+y2(t), x3(t)+y3(t), ……
Superposition Principle
Linearity
• Linear System:
• Property 2:
Input: a1(t), a2(t), a3(t), ……
output: x1(t), x2(t), x3(t), ……
Input: b1(t), b2(t), b3(t), ……
output: y1(t), y2(t), y3(t), ……
Input: a1(t)+ b1(t), a2(t)+ b2(t), a3(t)+ b3(t), ……
output: x1(t)+y1(t), x2(t)+y2(t), x3(t)+y3(t), ……
Superposition Principle
vt 
Linearity
vt 
i t 
g1 t 
0
g t 
g t   g1 t   g 2 t 
Superposition Principle can be
applied on all circuits in this
course (Textbook: Chapter 6.5).
0
i t 
g 2 t 
Announcement
• 10/22 (三) 第一次小考
•
•
•
•
Ch1. Circuit Variables and Laws (1.4, 1.5)
Ch2. Properties of Resistive Circuits (2.3, 2.4, 2.5)
Ch3. Applications of Resistive Circuits (3.2)
Ch4. Systematic Analysis Methods (4.1, 4.2, 4.3, 4.4)
• 助教時間:週一到週四 PM6:30~8:30
• 助教:黃盈庭 [email protected]
• 時間:週三PM6:30~8:30
• 地點:電二146
Thank you!
Appendix
Capacitor – Series (2)
If v is constant
i=0
Open circuit
What are v1, v2 ……?
Capacitor Application
• How Capacitive Liquid Level Sensors Work
• https://www.youtube.com/watch?v=0du-QU1Q0T4
Acknowledgement
• 感謝 林楷恩(b02)
• 指出投影片中 Equation 的錯誤