Download Useful Formulae in Advanced Level Physics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
lpy\physics\formula.doc May, 17
Useful Formulae in Advanced Level Physics
A1.
v2
  2r
r
A2. a   2 x
A3. L  I
A4.
a
dL
dt
A5.
1
E  I 2
2
B1.
T
v
m
B2.
E
v
T
B3. n  tan  p
B4.
d
C1.
C2.
C3.
C4.
C5.
D
4 o r
C6.
C10.
1
E  CV 2
2
C11. I  nAvQ
C12.
l
R
A
C13. F  BQv sin 
C14. f  BIl sin 
C15.
BI
V
nQt
C16.
 I
B o
2r

l
 II
F o 1 2
2r
C20. E  BAN sin t
C21. Vs / V p  N s / N p
C22.
E  L
velocity of longitudinal wave
motion in a solid
C23.
E
definition of the decibel
C28. Vo  Ao V  V 
Newton’s law of gravitation
C30.
gravitational potential
Kepler’s third law
electric field due to a point
charge
decay of charge with time when
a capacitor discharges
rise of charge with time when
charging a capacitor
energy stored in a capacitor
general current flow equation
resistance and resistivity
force on a moving charge in a
magnetic field
force on a moving conductor in a
magnetic field
Hall voltage
magnetic field due to long
straight wire
dI
dt
1 2
LI
2
C24. X L  L
C25.
1
XC 
C
C26. P  IV cos
C27. Vout
R
  L
Vin
RB
C29.
capacitance of a parallel plate
capacitor
o
B
velocity of transverse wave
motion in a stretched string
electric field between parallel
plates (numerically)
V
E
d
C7.
Q o A
C 
V
d
C8. Q  Q et / RC

C19. T  BANI sin 
electric potential due to a point
charge
Q
C9. Q  Q 1  et / RC
o
angular momentum of a rigid
body
torque on a rotating body
diffraction grating equation
Doppler frequency
I 
10 log10  2 
 I1 
Gm1m2
F
r2
GM
V 
r
r 3 / T 2  constant
Q
E
4 o r 2
V
simple harmonic motion
C18.
refractive index and polarising
angle
fringe width in double slit
interference
a
B5. d sin   n
B6.
 v  uo 
f
f '  

 v  us 
B7.
C17.
energy stored in a rotating body

 o NI
centripetal acceleration
A
Rf
A 1
Rf
P
o
t1 
2
D13. 1
energy stored in an inductor
reactance of an inductor
reactance of a capacitor
power in an a.c. circuit
voltage gain of transistor
amplifier in the common emitter
configuration
output voltage of op-amp
(open-loop)
gain of inverting amplifier
ln 2
k
mv m2  h  
2
D14. E  mc 2
gain of non-inverting amplifier
Ri
1 2
v  gh
2
= constant
D9. Q  U  W
D10.
13 .6
En   2 eV
n
D11. N  N e kt
D12.
force per unit length between
long parallel straight current
carrying conductors
torque on rectangular current
carrying coil in uniform
magnetic field
simple generator e.m.f.
ratio of secondary voltage to
primary voltage in a transformer
e.m.f. induced in an inductor
Ri
D1. PV  nRT  NkT
D2.
1
PV  Nmc 2
3
D3.
3RT 3
Ek 
 kT
2N A 2
D4.
F x
E /
A L
D5.
1
E  Fx
2
D6.
dU
F 
dr
D7. E  k / r
D8.
magnetic field inside long
solenoid
equation of state for an ideal gas
kinetic theory equation
molecular kinetic energy
macroscopic definition of Young
modulus
energy stored in stretching
relationship between force and
potential energy
microscopic interpretation of
Young modulus
Bernoulli’s equation
first law of thermodynamics
energy level equation for
hydrogen atom
law of radioactive decay
half-life and decay constant
Einstein’s photoelectric equation
mass-energy relationship