Download Lophius in the world: a synthesis on the common features and life

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Biodiversity action plan wikipedia , lookup

Latitudinal gradients in species diversity wikipedia , lookup

Island restoration wikipedia , lookup

Molecular ecology wikipedia , lookup

Overexploitation wikipedia , lookup

Bifrenaria wikipedia , lookup

Theoretical ecology wikipedia , lookup

Transcript
1272
Lophius in the world: a synthesis on the common features
and life strategies
A. C. Fariña, M. Azevedo, J. Landa, R. Duarte, P. Sampedro, G. Costas, M. A. Torres, and L. Cañás
Fariña, A. C., Azevedo, M., Landa, J., Duarte, R., Sampedro, P., Costas, G., Torres, M. A., and Cañás, L. 2008. Lophius in the world: a synthesis on
the common features and life strategies. – ICES Journal of Marine Science, 65: 1272– 1280.
Keywords: Atlantic Ocean, biological traits, life history, Lophius, NW Pacific, phylogeny.
Received 11 January 2008; accepted 9 August 2008.
A. C. Fariña, P. Sampedro, M. A. Torres, and L. Cañás: Instituto Español de Oceanografı́a, Paseo Marı́timo Alcalde Francisco Vázquez N8 10, 15001
A Coruña, Spain. M. Azevedo and R. Duarte: Instituto Nacional de Recursos Biológicos, INRB/L-IPIMAR, Avenida de Brası́lia, 1449-006 Lisboa,
Portugal. J. Landa: Instituto Español de Oceanografı́a, Promontorio de San Martı́n s/n, 39004 Santander, Spain. G. Costas: Instituto Español de
Oceanografı́a, Apartado 1552, 36200 Vigo, Spain. Correspondence to A. C. Fariña: tel: þ34 981 205362; fax: þ34 981 229077; e-mail: celso.
[email protected].
Introduction
The order Lophiiformes (Pisces: Teleostei) contains a highly
diverse group of strictly marine fish distributed throughout the
world’s oceans. The order includes 65 genera and 18 families, distributed among five suborders: Lophioidei, Antennarioidei,
Chaunacoidei, Ogcocephaloidei, and Ceratioidei (Pietsch, 1984;
Pietsch and Grobecker, 1987). The suborder Lophioidei (reviewed
by Caruso, 1981, 1983), contains a single family, the Lophiidae,
consisting of four genera (Sladenia, Lophiodes, Lophiomus, and
Lophius) and 25 species (Caruso, 1985).
The Lophiidae are found in temperate, tropical, and subtropical waters of the Atlantic, Indian, and western Pacific, but oddly
enough not in the eastern Pacific. They are characterized by the
dorso-ventrally compressed morphology of the head and body, a
wide and cavernous mouth, thin skin, an absence of scales and
swimbladder, and a modified first dorsal fin ray (illicium) with a
terminal esca, which serves as a lure.
Worldwide, seven species of Lophius (goosefish, monkfish, or
anglerfish) are known, six being found along both coasts of the
Atlantic Ocean, one extending to the western Indian Ocean, and
the other in the Northwest Pacific (Figure 1). Lophius americanus
is distributed in the Northwest Atlantic from the northern Gulf of
St Lawrence and the Grand Banks, south to Cape Hatteras, NC
(Steimle et al., 1999). Lophius gastrophysus lives in the western
Atlantic from NC, USA, and the northern Gulf of Mexico
to Argentina. The distribution of Lophius vomerinus extends
from northern Namibia in the Southeast Atlantic to Durban on
the east coast of South Africa, and in the northern and western
Indian Ocean (FAO, 2008). Lophius vaillanti is found in the
eastern Atlantic from north of Walvis Bay (238S) to the Gulf of
Guinea (Maartens and Booth, 2005). Lophius piscatorius inhabits
the Northeast Atlantic from Iceland and the southwestern
Barents Sea to the Strait of Gibraltar, including the
Mediterranean and the Black Sea (Caruso, 1986; Solmudsson
et al., 2007). Lophius budegassa coexists with L. piscatorius over
most of the range of the latter, although it has a more southerly
distribution, from the British Isles to Senegal (Caruso, 1986).
Finally, Lophius litulon occurs in the Northwest Pacific from
Hokkaido to Kyushu, in the Gulf of Po-Hai, the Yellow Sea, and
the East China Sea (Yoneda et al., 1997). The presence of the
genus in the Pacific is restricted to those waters, because it is
absent from the central and eastern Pacific Ocean.
The most common habitat of the genus Lophius is bathydemersal over the continental shelf and upper slope down to depths
.1000 m, on soft to hard sand and gravel substrata. The fish
stay in the water column as eggs and larvae, then shift to a
benthic existence as juveniles and adults. Anglerfish are caught
in bottom trawl mixed or target fisheries, or as target species
using gillnets. They are highly prized for human consumption
and usually marketed fresh or frozen.
# 2008 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved.
For Permissions, please email: [email protected].
Downloaded from http://icesjms.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014
Seven species of Lophius are known worldwide, six in the Atlantic Ocean and just one in the Northwest Pacific. The genus supports
valuable fisheries (except for Lophius vaillanti), most for a long time, though the exploitation of Lophius gastrophysus along the coast of
Brazil is relatively recent. The manuscript reviews the current knowledge of phylogeographic and biological traits of Lophius species,
pointing out common aspects in the life histories. Within the Lophiidae, the genus Lophius is phylogenetically the most derived, vicariance and dispersal having played a significant role in driving speciation. Life histories seem to have followed similar adaptive processes
from a common ancestor along with similar environmental characteristics. The genetic structure of populations is poorly known, and
usually, genetic differentiation is limited. Life-history aspects (age, growth, reproductive cycle, early stages, and feeding ecology) are
addressed, and fisheries are reviewed. However, knowledge of many aspects of the biology and ecology (e.g. validation of the
growth pattern, maturation processes, spawning areas and periodicity, recruitment processes, mortality, stock identification, and
habitat needs) remains limited.
1273
Synthesis of the common features and life strategies of Lophius spp.
Figure 1. World map showing the distribution of Lophius species. La,
L. americanus; Lb, L. budegassa; Lg, L. gastrophysus; Ll, L. litulon; Lp, L.
piscatorius; Lv, L. vaillanti; and Lvo, L. vomerinus.
Phylogeny and biogeography
The origins of the related species of Lophius scattered throughout
the world’s oceans are linked to geological and biogeographical
events, such as tectonic activity, genetic divergence, colonization,
and geographic isolation, regression and expansion. The emergence of natural barriers as a result of geological changes led to
speciation by vicariance or dispersal (Grant and Leslie, 1993).
Phylogenies based on morphological characters and allozymes
have been used to propose derivations of the Lophiidae, identifying sister taxa and explaining the current geographic distribution
of the species of Lophius (Grant and Leslie, 1993). Caruso
(1985) concluded that the genus Lophius is the most derived of
the four genera of the family Lophiidae, based on external osteology and other morphological characters. In formulating hypotheses for the phylogeny of the genus, Caruso (1977) proposed
that small numbers of pectoral and dorsal fin rays and vertebrae
represented the primitive state and large numbers the derived
state. Among species of Lophius, L. vaillanti has the fewest pectoral
fin rays (19–24), so according to Caruso’s hypothesis, it may be
phylogenetically the most primitive species of the genus. Lophius
americanus and L. piscatorius have relatively large numbers of
vertebrae (30–31) and dorsal fin rays, so may represent the
most derived types, although the similarity of the morphological
characters could be the result of convergence processes between
distantly related species (Caruso, 1983; Leslie and Grant, 1994).
The following sequences of historical biogeographic and
divergence events for the species of Lophius were suggested by
Grant and Leslie (1993). The genus Lophius arose from a
common ancestor of Lophiomus [a monotypic genus widely
distributed throughout the western Pacific and Indian Ocean
(Caruso, 1983)] by the closure of the Téthys Sea. The tropical
eastern Atlantic L. vaillanti represents the most morphologically
and genetically primitive of the Lophius species. Tectonic separation of the South American and African Plates split the ancestral
Population structure and migrations
The population structure of Lophius species remains poorly
known. Most studies are restricted to North Atlantic species.
Overall, both European anglerfish show limited genetic structure,
low genetic variation having been detected off the west coast of
Scotland (Crozier, 1988) and between populations from the Irish
Sea and the west of Scotland (Crozier, 1987). In contrast, Blanco
et al. (2006) reported high levels of microsatellite polymorphism
for both L. piscatorius and L. budegassa from the Cantabrian Sea,
north of Spain. For the northernmost populations of L. piscatorius,
however, O’Sullivan et al. (2006) found no spatial or temporal
genetic differentiation. Charrier et al. (2006) obtained similar
results throughout the Northeast Atlantic and the Mediterranean
Sea, but did find a significant, though weak, differentiation
between Atlantic and Mediterranean populations of L. budegassa.
They attributed this contrast between species to a combination of a
phylogeographic barrier across the Almerı́a –Orán oceanographic
front and the possibility of ancient colonization of the
Mediterranean Sea by L. budegassa. Also for L. budegassa in the
Mediterranean, Garoia et al. (2003) described a moderate level
of genetic variation in polymorphic microsatellite loci.
Populations of L. americanus are relatively homogeneous
genetically along the US east coast, with the level of polymorphism
within populations as low as that between populations
(Chikarmane et al., 2000). Smith and Fujio (1982) also reported
a very low level of genetic variation in L. litulon, but high levels
have been observed in L. vomerinus off South Africa (Leslie and
Grant, 1990).
The lack of differentiation in the diverse species of Lophius
suggests unrestricted gene flow over large areas. A common
ecological strategy can be drawn, through potential broad dispersal
capacity by an extended larval pelagic phase during which they are
passively transported by currents before settling on the seabed
(Leslie and Grant, 1990; Hislop et al., 2001). Moreover, juveniles
and adults can move considerable distances, though the goal of
such movements is not clear. For the Northeast Atlantic, Pereda
and Landa (1997) and Laurenson et al. (2005) documented both
spatial stability and extensive displacements of L. piscatorius.
Laurenson et al. (2005) reported displacements of up to 876 km
by an immature female, from a release location near the
Shetland Islands to the southeast of Iceland, showing that large
Downloaded from http://icesjms.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014
Aspects of anglerfish life history and fisheries are well documented for some species, particularly for those from the North
Atlantic and for L. litulon, but many aspects of the biology and
ecology remain poorly known. For example, little is known
about maturation, reproduction, spawning time or location, or
the larval phase. The goal of this paper is to review the current
knowledge and recent literature on the main biological characteristics and fisheries of the species of the genus, and to identify the
common life strategies of the various species, pointing out the gaps
and research needs from a perspective of fisheries management.
tropical population and led to the appearance of L. gastrophysus in
the West and the South Atlantic. A northward expansion of the
range and vicariance or dispersal from ancestral South Atlantic
populations gave rise to L. americanus. Grant and Leslie (1993)
went on to suggest that an ancestral European species of Lophius
arose from an ancestral North American species by a northeasterly
expansion or dispersal of larvae or adults. Palaeo-oceanographic
events in the Mediterranean Sea allowed the appearance of the
two European species, Lophius piscatorius and L. budegassa.
Dispersal of a European ancestor along the West African coast
led to the appearance of L. vomerinus in the eastern South
Atlantic. This species is considered a probable sister taxon of
L. budegassa. Grant and Leslie (1993) also theorized that
L. litulon arose by long-distance dispersal from the North
Atlantic to the western North Pacific through a warmer Arctic
Ocean after the Pliocene opening of the Bering Strait. Lophius
piscatorius and L. litulon are sister taxa. The lack of colonization
in the eastern North Pacific or posterior extinctions may explain
the non-existence of Lophius in other areas of the Pacific.
1274
Feeding ecology
Anglerfish are opportunistic, non-selective feeders, with a
common feeding strategy. They are sit-and-wait predators,
luring their prey by raising and moving the illicium. Food habits
and diet composition are known for most species, although the
information is limited for L. vaillanti and L. gastrophysus.
The diet spectrum is size-dependent, with a similar pattern
throughout the genus: invertebrates (crustaceans and cephalopods)
make up a significant part of the diet of small juveniles, the consumption of invertebrates decreases with age, and larger juveniles
and adults are mainly ichthyophagous, which includes a wide
range of pelagic and benthic fish prey. Larger fish eat larger prey,
but prey size selection can be attributed as much to the size
and morphology of the mouth as to visual or sensory factors
(Gordoa and Macpherson, 1990). In addition to overall ontogenetic shifts, the diet depends largely on predator size and geographic
area, and like most ambush feeders, anglerfish diet varies seasonally to reflect spatio-temporal patterns in prey availability and
abundance (Kosaka, 1966; Crozier, 1985; Laurenson and Priede,
2005). Adult L. americanus prey primarily on teleosts (red hake,
Urophycis chuss, and sand lance, Ammodytes spp.; Armstrong
et al., 1996), but there is also seasonal predation on squid
(Staudinger, 2006). Over its geographical range, large L. piscatorius
consume different prey items, with Norway pout (Trisopterus
esmarkii) and blue whiting (Micromesistius poutassou) being the
main prey in northern and southern European waters, respectively
(Crozier, 1985; Pereda and Olaso, 1990; Laurenson and Priede,
2005), and other prey significant in certain areas at certain
times. For example, whiting (Merlangius merlangus) and Norway
lobster (Nephrops norvegicus) are significant components of
anglerfish diet in the Irish Sea (Crozier, 1985), lesser sandeel
(Ammodytes marinus) is seasonally important around Shetland
(Laurenson and Priede, 2005), and cephalopods are important
in the Cantabrian Sea (Velasco et al., 1998). Blue whiting and
Phycis blennoides are major food items for middle and older age
classes of L. budegassa in the Cantabrian Sea (Preciado et al.,
2006). Dragonets (Paracallionymus costatus) and Cape hake
(Merluccius capensis and Merluccius paradoxus) dominate the
diet of L. vomerinus (Macpherson, 1985; Walmsley et al., 2005).
Prey organisms of L. litulon are mainly fish, with Pseudosciaena
manchurica being cited as dominant throughout the year and for
all predator sizes (Cha et al., 1997).
Empty stomachs are often found in Lophius, at a variable rate
throughout the year, suggesting a low frequency of feeding
(Crozier, 1985; Armstrong et al., 1996; Walmsley et al., 2005;
Preciado et al., 2006). There does, however, tend to be an increase
in the frequency of empty stomachs in autumn (up to 70% in
L. budegassa) and with depth (Preciado et al., 2006). Seasonal
variation in feeding intensity, with a decrease in autumn, has
also been recorded for L. litulon (Kosaka, 1966), and Crozier
(1985) reported major feeding activity of L. piscatorius in
autumn and winter. It has been suggested that larger anglerfish
only move to capture prey in response to internal rhythms
independent of food availability (Macpherson, 1985) or when
guaranteed a return, and that they do not eat again until the
previous prey is completely digested (Kosaka, 1966). This could
be a strategy to ensure maximum energy intake to offset the
expense of prey capture (Walmsley et al., 2005).
Very low incidences of cannibalism have been reported for
Lophius (Crozier, 1985; Cha et al., 1997; Laurenson and Priede,
2005; Walmsley et al., 2005), except in L. americanus, for which
predation by older conspecifics is relatively common (Armstrong
et al., 1996).
Reproduction and early life
Typically, the morphology of anglerfish ovaries differs markedly
from that of most other teleosts. Ovarian structure consists of
very long ribbons of a gelatinous matrix, within which individual
mature eggs float in separate chambers (Armstrong et al., 1992;
Afonso-Dias and Hislop, 1996). In ripe females, the egg ribbons
may be .10-m long and may contain more than a million eggs
(Armstrong et al., 1992; Yoneda et al., 2001). The gonad mass of
a mature female in spawning condition forms up to 35 –50% of
total body mass (Armstrong et al., 1992; Yoneda et al., 2001;
Walmsley et al., 2005) representing a considerable energetic
contribution to reproduction. Females spawn buoyant gelatinous
egg masses. Fertilization is external, but spawning behaviour
and areas are poorly documented for the Atlantic. During the
spawning season, L. piscatorius produces a single batch (AfonsoDias and Hislop, 1996), but L. litulon appears to spawn several
batches (Yoneda et al., 2001). Female Lophius mature at a larger
size than males, and spawning seasonality varies between species
and geographic area (Table 1).
The eggs and the larvae are pelagic. Hislop et al. (2001)
indicated that the pelagic phase of L. piscatorius lasted for up to
4 months after hatching, but the early life stages are poorly
known. The stages of embryonic and larval development of
L. americanus were described by Everly (2002), and in varying
degrees of detail for L. piscatorius (several reviews in the first
part of the 20th century; Laurenson, 2006), L. gastrophysus
(Matsuura and Yoneda, 1986), and L. litulon (Kim, 1976). The
phylogenetic proximity between L. gastrophysus and L. americanus
is supported by the same pattern and sequence of dorsal fin spine
development at the larval stage (Everly, 2002).
The common reproductive strategy of Lophius in releasing eggs
in single veils may facilitate their dispersion and that of the larvae
over great distances, while allowing for their protection against
Downloaded from http://icesjms.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014
displacements are not restricted to mature anglerfish. Other
species (L. americanus, L. budegassa, and L. litulon) exhibit seasonal onshore–offshore movements in response to thermal conditions, prey availability, or in relation to spawning (Steimle
et al., 1999; Landa et al., 2001a; Yoneda et al., 2002). Vertical displacements of immature and mature L. piscatorius from the seabed
to near the surface have been recorded in the Northeast Atlantic
(Hislop et al., 2000); the cause of this behaviour is unknown,
but it may relate to spawning or feeding.
There is no strong genetic evidence for stock discrimination
in North Atlantic Lophius species. However, for management
purposes, different areas have been defined based either on
geographical barriers or on different operating fleets. Two stocks
are defined (northern and southern) for L. americanus (Steimle
et al., 1999) and L. budegassa (ICES, 2006), and three for
L. piscatorius (ICES, 2006). For both L. piscatorius and
L. budegassa, morphometric characters provide reasonable discrimination among populations from western and southern
European waters (Duarte et al., 2004), but as described above,
genetic and other biological traits make the current geographical
boundary for separation of northern and southern stocks questionable (Fariña et al., 2004). Morphological evidence for stock
structure among areas of the distribution range has also been
documented for L. vomerinus by Leslie and Grant (1990).
A. C. Fariña et al.
1275
Synthesis of the common features and life strategies of Lophius spp.
Table 1. Length-at-first-maturity by sex and spawning season for species of the genus Lophius.
Species
Length-at-first-maturity (cm)
Spawning season
Source
predators (Armstrong et al., 1992). Pelagic stages may intermix
over wide areas, but in L. piscatorius there is evidence of transitory
segregation (Swan et al., 2004), which is probably related to the
overall limited genetic differentiation and the morphological components detected.
Age and growth
There have been many studies on age and growth of anglerfish, most
undertaken in the past 20 years and with emphasis on European
species. Again, data are particularly scarce for L. gastrophysus and
L. vaillanti.
Different hard parts (otoliths, illicia, and vertebrae) have been
used for the purpose. Whole or sectioned sagittal otoliths were
used in earlier studies (Tsimenidis and Ondrias, 1980; Griffiths
and Hecht, 1986; Crozier, 1989) but their opacity, irregular
margins, and incidence of multiple growth zones made
interpretation difficult. An alternative option was available in the
interpretation of sectioned illicia. This technique, developed by
Dupouy et al. (1986) for L. piscatorius, has been widely used for
age determination of European (Duarte et al., 1997; Quincoces
et al., 1998a, b; Landa et al., 2001b; Garcı́a-Rodrı́guez et al., 2005)
and other species, for example L. vomerinus (Maartens et al.,
1999; Walmsley et al., 2005). Illicia have the advantage of being
simple to collect from commercial samples, so allowing high
sampling intensity. Vertebrae have been used in studies on the age
and growth of L. americanus and L. litulon (Armstrong et al.,
1992; Yoneda et al., 1997; Cha et al., 1998; Cullen et al., 2007).
Regardless of preference for the structure used, all authors
reported great difficulties in age interpretation, mainly because
of the location of the first annulus and the existence of false
annuli. Comparative studies between structures are scarce,
although Wright et al. (2002) analysed the microstructure of
lapilli otoliths of L. piscatorius to determine the position of the
first annulus and to compare them with the microstructure of
illicia and sagittae. Results indicated that the first increment on
illicia might not be annual. Additionally, recent mark-recapture
experiments applied to L. piscatorius provided evidence of faster
growth than inferred from reading illicia (Laurenson et al., 2005;
Landa et al., 2008). Woodroffe et al. (2003) showed that development of the marginal increments on otoliths and illicia has a
similar pattern, and that the precision of age determination was
better for sagittae sectioned through the sagittal plane than for
whole otoliths or for illicia. However, it is necessary to take into
account the fact that precision and agreement in age estimation
among readers is related to the experience and familiarity of the
reader with each structure. A comparative study between structures of the same fish, with readers experienced in the use of
both illicia and otoliths, was performed at a workshop held in
2004 for L. piscatorius and L. budegassa. Results were that agreement between experienced readers was better for illicia for both
species and that ages from illicia tended to be higher than for
otoliths (Duarte et al., 2005).
Among the different studies whose growth parameters are summarized in Table 2, some general patterns can be extracted. First,
the northern species (L. americanus, L. piscatorius, and L. litulon)
show faster growth rates than austral (L. vomerinus) and
European species with a more southern distribution (L. budegassa).
Second, growth rates differ significantly between sexes, particularly
in older fish (Figure 2). Females attain greater length and, according to age readings, greater age than males. Of the Lophius species,
the L1 for females ranged from 110 to 166 cm and for males from
68 to 129 cm, with age estimates up to 25 and 21 years, respectively
(Table 2). Finally, length-at-age increases approximately linearly
until ages 11 –15 in L. piscatorius, L. budegassa, and L. americanus
(Cullen et al., 2007; Duarte et al., 2007; Landa et al., 2007).
Fisheries
The genus Lophius is exploited worldwide. Historically, they have
been bycatch in mixed fisheries, but an increase in their economic
value together with the overexploitation of other groundfish
species has led to the development of targeted anglerfish fisheries.
Anglerfish are caught with trawl and fixed nets, mostly gillnets.
According to FAO (2007), the world catch of the three main
species (L. piscatorius, L. americanus, and L. vomerinus) in 2007
levelled off at .100 000 t. In general, anglerfish are managed
through one or a combination of a total allowable catch (TAC),
effort control, mesh size restrictions, and seasonal closures.
Lophius piscatorius and L. budegassa have been exploited in
northern European waters for at least a century as a valuable
bycatch (Hislop et al., 2001), and since the 1980s they have also
become an important fishery resource in Iberian waters (Piñeiro
Downloaded from http://icesjms.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014
Females
Males
Lophius
piscatorius
73.2
–
98.0
48.9 –58.0
November –May
Afonso-Dias and Hislop (1996)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
January
–June
Duarte
et al. (2001)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
May–June
Quincoces
et al. (1998b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laurenson
et
al. (2001)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lophius
budegassa
54.8
–
64.5
34.5
–37.6
October
–March
Duarte
et
al.
(2001)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
May–June
Quincoces et al. (1998a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lophius
americanus
44.0
–
48.5
36.9
–40.0
May–June
Armstrong et al. (1992)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Almeida
et al. (1995)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lophius
vomerinus
58.2
39.9
Austral
spring
Maartens
and Booth (2005)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36.9
37.6
Walmsley
et al. (2005)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lophius
litulon
56.7
36.2
February
–May
Yoneda
et
al. (2001)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lophius gastrophysus
50.0
–
Austral spring and summer
Valentim et al. (2007)
1276
A. C. Fariña et al.
Table 2. Growth parameters (L1, k, and t0) for male and female Lophius spp. from studies based on readings of illicia and vertebrae.
et al., 2001; ICES, 2006). Both species are caught on the
same grounds by the same fleets and are marketed together, but
L. piscatorius is the most abundant. Landings increased sharply
with the development of directed fisheries and the expansion to
deeper water with improvements in fishing technology. ICES provides advice for the management of three stocks in European
waters: North Sea (Divisions IIIa, IVa –c, and VIa,b), Northern
(Divisions VIIb –k and VIIIa,b,d), and Iberian (Divisions VIIIc
and IXa) stocks. Total landings from these stocks ranged, in the
past two decades, from 50 000 to 70 000 t (ICES, 2008a, b).
Figure 2. Mean length-at-age for a selection of growth studies on
Lophius spp.
Lophius americanus is commercially exploited by Canada and
the USA. In Canada, the most important fishery is on the
Scotian Shelf, and the species is an important bycatch species in
the fisheries on the Grand Banks and in the Gulf of St Lawrence
(Kulka and Miri, 2003). The US commercial fishery operates in
deep water of the Gulf of Maine, Georges Bank, and off southern
New England. The development of this fishery in the 1980s was
related to the opening of the international markets of Europe
and Asia, and led to a peak in landings in 1998, of some
29 000 t (NOAA, 2004). After the implementation of a management plan in the USA in 2000, landings have remained at
20 000 t (NOAA, 2004).
Although both L. vomerinus and L. vaillanti are found in waters
of the Southeast Atlantic, L. vomerinus is the most abundant (94%
of Namibian anglerfish landings) and commercially valuable
(Maartens and Booth, 2001a, b). FAO total official catches for
L. vomerinus in 1999 were 21 000 t, with Namibia and South
Africa being the countries recording highest catches. In Namibia
until the early 1990s, anglerfish were taken as bycatch in the
trawl fishery targeting Cape hake, but since independence in
1991, the anglerfish-directed fishery has grown substantially,
from ,2000 to 12 000 t in 1994 (Booth and Quinn, 2006). In
2001, a management plan was introduced, and as well as other
management measures, a TAC of 13 000 t was established. In
South Africa, where anglerfish is still just a bycatch of the trawl
fishery targeting Cape hake (Walmsley et al., 2005), catches
increased from some 5000 t in the 1980s to 10 700 t in 2001
(Booth, 2004). A catch limit of 7000 t was introduced in 2005
(R. W. Leslie, pers. comm.).
Lophius gastrophysus, known locally as “frog-fish” is one of the
main resources of deep-sea fisheries off the south and southeast
coasts of Brazil. Historically, it has been a bycatch of the industrial
shrimp fishery (Jablonski et al., 1998; Vianna and Almeida, 2005),
but in 2001 it became the target of the trawl fishery operating
south of Brazil and of a foreign fleet operating with “rasco”, a
gillnet specially designed to catch the species (Bruno et al., 2001;
Perez et al., 2002a, b). The efficiency of the “rasco” underpinned
Downloaded from http://icesjms.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014
Species
Area
Method
Sex
L1 (cm)
k
t0
Source
Lophius
piscatorius
Celtic
Sea
and
Bay
of
Biscay
Illicia
Male
129.50
0.11
0.54
Dupouy et al. (1986)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Female
166.60
0.08
0.40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Iberian Atlantic waters
Illicia
Male
110.50
0.11
0.25
Landa et al. (2001b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Female
163.50
0.06
20.44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lophius
americanus
Southern New England and Virginia
Vertebrae
Male
105.90
0.16
0.20
Armstrong et al. (1992)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Female
157.60
0.10
0.16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lophius
litulon
East China Sea and Yellow Sea
Vertebrae
Male
113.00
0.08
0.40
Yoneda et al. (1997)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Female
154.70
0.06
0.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Southwest Korean waters
Vertebrae
Male
82.23
0.18
20.64
Cha et al. (1998)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Female
127.60
0.12
20.39
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lophius budegassa
Celtic Sea and Bay of Biscay
Illicia
Male
84.76
0.10
0.56
Dupouy et al. (1986)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Female
111.20
0.07
0.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Iberian Atlantic waters
Illicia
Male
71.50
0.13
0.05
Landa et al. (2001b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Female
93.50
0.10
0.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lophius vomerinus
Namibian waters
Illicia
Male
72.30
0.14
20.30
Maartens et al. (1999)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Female
112.00
0.08
20.36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
West South African coast
Illicia
Male
68.50
0.10
21.69
Walmsley et al. (2005)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Female
110.20
0.05
21.54
Synthesis of the common features and life strategies of Lophius spp.
1277
the development of a national gillnet fleet targeting anglerfish
(Perez et al., 2002a). In 2001, the anglerfish landings from southeastern Brazil were some 9000 t, and 37% of this was from the
gillnet fleet (Perez et al., 2005). Because of the heavy exploitation
and economic importance of L. gastrophysus, a federal regulation
with several measures aimed at sustainable exploitation was established in 2005 (Valentim et al., 2007).
Fishery information on L. litulon is scarce. The species is caught
by bottom trawlers from Japan, China, and Korea during winter,
but other species commercially exploited in the same area are considered to be more important than anglerfish (Yoneda et al., 2001).
† information on the maturation processes, on the role of the
gelatinous veil, spawning behaviour, spawning areas, and
fecundity;
Final remarks
† basic biological studies and data on populations of L. gastrophysus
and L. vaillanti;
† basic data (length composition, abundance index, size distribution, etc.) on several species of Lophius;
† for European anglerfish (L. piscatorius and L. budegassa), more
accuracy in age determination;
† for other species of Lophius, age and growth data collected
routinely for age-based analysis;
† environmental effects of fishing on population dynamics;
† determination of the spawning components and stock structure, to identify appropriate management units.
Acknowledgements
We thank the European Commission, Directorate General
Fisheries, for financial support through Study Contract 99/013
and FISH/2004/03-22, U. Autón for technical assistance, and
the Instituto Español de Oceanografı́a for financial support to
MAT through a research grant.
References
Afonso-Dias, I., and Hislop, J. R. G. 1996. The reproduction of anglerfish Lophius piscatorius Linnaeus from the north-west coast of
Scotland. Journal of Fish Biology, 49: 18– 39.
Almeida, F. P., Hartley, D. L., and Burnett, J. 1995. Length – weight
relationships and sexual maturity of goosefish off the northeast
coast of the United States. North American Journal of Fisheries
Management, 15: 14 – 25.
Armstrong, M. P., Musick, J. A., and Colvocoresses, J. A. 1992. Age,
growth, and reproduction of the goosefish Lophius americanus
(Pisces: Lophiiformes). Fishery Bulletin US, 90: 217 – 230.
Armstrong, M. P., Musick, J. A., and Colvocoresses, J. A. 1996.
Food and ontogenetic shifts in feeding of the goosefish, Lophius
americanus. Journal of Northwest Atlantic Fishery Science, 18:
99 – 103.
Blanco, G., Borrell, Y. J., Cagigas, E., Vázquez, E., and Sánchez Prado,
J. A. 2006. A new set of highly polymorphic microsatellites for the
white and black anglerfish (Lophiidae). Molecular Ecology Notes,
6: 767– 769.
Booth, A. J., and Quinn, T. J. 2006. Maximum likelihood and Bayesian
approaches to stock assessment when data are questionable.
Fisheries Research, 80: 169– 181.
Booth, T. 2004. South African monkfish (Lophius vomerinus) stock
assessment. Marine and Coastal Management Demersal Working
Group Document WG/05/04/D: A7. 18 pp.
Bruno, I., Fariña, A. C., Landa, J., and Morlán, R. 2001. The gillnet
fishery for anglerfish (Lophius piscatorius) in deep-water in
the Northwest of Iberian Peninsula. NAFO SCR Document 01/
99. 5 pp.
Caruso, J. H. 1977. The systematics of the fish family Lophiidae. PhD
thesis, Tulane University, New Orleans, USA. 219 pp.
Caruso, J. H. 1981. The systematics and distribution of the lophiid
anglerfishes. 1. A revision of the genus Lophioides with the description of two new species. Copeia, 1981: 522 –549.
Caruso, J. H. 1983. The systematics and distribution of the lophiid
anglerfishes. 2. Revisions of the genera Lophiomus and Lophius.
Copeia, 1983: 11 – 30.
Caruso, J. H. 1985. The systematics and distribution of the lophiid
anglerfishes. 3. Intergeneric relationships. Copeia, 1985: 870 – 875.
Caruso, J. H. 1986. Lophiidae. In Fishes of the North-eastern Atlantic
and the Mediterranean, pp. 1362– 1363. Ed. by P. J. P. Whitehead,
Downloaded from http://icesjms.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014
This very general overview shows that species of the genus Lophius
have similar traits throughout the world. However, some biological and life-history aspects, as well as fisheries and exploitation patterns, have different levels of knowledge, depending on species and
geographic area.
Growth studies based on illicia (L. piscatorius and L. budegassa)
and vertebrae (L. americanus) show a linear relation between age
and total length, which is not consistent with the von
Bertalanffy growth model (von Bertalanffy, 1938). Information
on growth rate is crucial because estimation of stock/population
productivity and resilience is partly dependent on it. For all
Lophius species, there is a great need for information related to
validation of the methods of age determination. Among others,
Wright et al. (2002) and Landa et al. (2008) provide information
on this topic for L. piscatorius, and it suggests that the current
reading criteria applied to illicia may be biased, which might
underpin the apparently linear growth pattern. Therefore, undertaking similar studies for other species of Lophius and in other
areas is important, because clarification may be obtained for all
species of Lophius from such research.
Studies on the reproductive biology of Lophius show general
sampling problems related to sampling females close to the spawning season. Such seasons are generally broadly defined, and related
parameters such as age- and length-at-first-maturity are difficult
to estimate, particularly for females. More investigation of this
topic could provide more insight into the location of spawning
grounds, and knowledge of spawning behaviour would be of
benefit to management of all Lophius species.
The exploitation of Lophius species showed a similar development worldwide, with commercial interest being relatively recent
compared with the more traditional groundfish species. In trawl
fisheries, Lophius started as a bycatch, but as commercial interest
grew in the 1970s and 1980s, directed fisheries developed, generally
using fixed gear such as gillnets.
Based on the information currently available and summarized
here, more research is needed on the biology, life history, and
ecology of Lophius, and on the development of the fisheries and
their dynamics. By combining information from different
sources, geographic areas, and species, it should be possible to
improve general understanding of the dynamics of the genus.
We consider that the main areas requiring further data collection
and research are:
† early development, the pelagic larval phase, mortality, and the
survival of recently settled juveniles;
1278
Fariña, A. C., Duarte, R., Landa, J., Quincoces, I., and Sánchez, J. A.
2004. Multiple stock identification approaches of anglerfish
(Lophius piscatorius and L. budegassa) in western and southern
European waters. ICES Document CM 2004/EE: 25. 20 pp.
Garcı́a-Rodrı́guez, M., Pereda, P., Landa, J., and Esteban, A. 2005. On
the biology and growth of the anglerfish Lophius budegassa Spinola,
1807 in the Spanish Mediterranean: a preliminary approach.
Fisheries Research, 71: 197– 208.
Garoia, F., Guarniero, I., and Tinti, F. 2003. Polymorphic dinucleotide
microsatellites for the Mediterranean angler species (Lophiidae).
Molecular Ecology Notes, 3: 294– 296.
Gordoa, A., and Macpherson, E. 1990. Food selection by a sit-and-wait
predator, the monkfish, Lophius upsicephalus, off Namibia (South
West Africa). Environmental Biology of Fishes, 27: 71 – 76.
Grant, W. S., and Leslie, R. W. 1993. Biochemical divergence and biogeography of anglerfish of the genus Lophius (Lophiiformes).
Journal of Zoology, London, 231: 465– 485.
Griffiths, M. H., and Hecht, T. 1986. A preliminary study of age and
growth of the monkfish Lophius upsicephalus (Pisces: Lophiidae)
on the Agulhas Bank, South Africa. South African Journal of
Marine Science, 4: 51– 60.
Hislop, J. R. G., Gallego, A., Heath, M. R., Kennedy, F. M., Reeves,
S. A., and Wright, P. J. 2001. A synthesis of the early life history
of the anglerfish, Lophius piscatorius (Linnaeus, 1758) in northern
British waters. ICES Journal of Marine Science, 58: 70 – 86.
Hislop, J. R. G., Holst, J. C., and Skagen, D. 2000. Near-surface captures of post-juvenile anglerfish in the North-east Atlantic—an
unsolved mystery. Journal of Fish Biology, 57: 1083– 1087.
ICES. 2006. Report of the ICES Advisory Committee on Fishery
Management, Advisory Committee on the Marine Environment
and Advisory Committee on Ecosystems, 2006. ICES Advice,
1 – 10. Book 5, 271 pp., and Book 7, 113 pp.
ICES. 2008a. Working Group on the Assessment of Southern Shelf
Stocks of Hake, Monk and Megrim. ICES Document CM 2008/
ACOM: 07. 613 pp.
ICES. 2008b. Working Group on the Assessment of Northern Shelf
Demersal Stocks. ICES Document CM 2008/ACOM: 08. 726 pp.
Jablonski, S., Oliveira, S. M., and Aguiar, F. F. 1998. A pesca do
camarão rosa no Rio de Janeiro. Informe 98.3. Rio de Janeiro,
Fundação Instituto de Pesca do Estado do Rio de Janeiro
(FIPERJ). 14 pp.
Kim, Y. U. 1976. On the morphology of larval stages of Lophius litulon
(Jordan). Bulletin of the Korean Fisheries Society, 9: 273– 280.
Kosaka, M. 1966. Feeding habits of angler-fish, Lophius litulon. Journal
of the Faculty of Oceanography, 1: 49 – 70.
Kulka, D. W., and Miri, C. M. 2003. The status of monkfish (Lophius
americanus Valenciennes 1837: Lophiidae) on the Grand Banks,
NAFO Divisions 3L, 3N, 3O, and Subdivision 3Ps. Canadian
Science and Advisory Secretariat Research Document 2003/100.
62 pp.
Landa, J., Duarte, R., Fariña, A. C., Bruno, I., and Castro, J. 2001a.
Mark-recapture studies of black anglerfish (Lophius budegassa) in
the north-eastern Atlantic: preliminary results. ICES Document
CM 2001/O: 21 Poster.
Landa, J., Duarte, R., and Quincoces, I. 2008. Growth of white anglerfish (Lophius piscatorius) tagged in the Northeast Atlantic, and a
review of age studies on anglerfish. ICES Journal of Marine
Science, 65: 72– 80.
Landa, J., Duarte, R., Sampedro, P., Azevedo, M., Fariña, A. C., and
Costas, G. 2007. Age – length-keys and catch– at-age of white
anglerfish (Lophius piscatorius) in Atlantic Iberian waters from
1996 to 2006. ICES Document CM 2007/K: 25 Poster.
Landa, J., Pereda, P., Duarte, R., and Azevedo, M. 2001b. Growth of
anglerfish (Lophius piscatorius and L. budegassa) in Atlantic
Iberian waters. Fisheries Research, 51: 363– 376.
Downloaded from http://icesjms.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014
M. L. Bauchot, J. C. Hureau, J. Nielsen, and E. Tortonesse.
UNESCO, Paris. 1473 pp.
Cha, B. Y., Hong, B. Q., Jo, H. S., Sohn, H. S., Park, Y. C., Yang, W. S.,
and Choi, O. I. 1997. Food habits of the yellow goosefish, Lophius
litulon. Journal of the Korean Fisheries Society, 30: 95 – 104.
Cha, B. Y., Park, Y. C., and Huh, S. H. 1998. Age and growth of the
yellow goosefish, Lophius litulon. Journal of the Korean Fisheries
Society, 31: 529 –534.
Charrier, G., Chenel, T., Durand, J. D., Girard, M., Quiniou, L., and
Laroche, J. 2006. Discrepancies in phylogeographical patterns
of two European anglerfishes (Lophius budegassa and Lophius
piscatorius). Molecular Phylogenetics and Evolution, 38: 742 – 754.
Chikarmane, H. M., Kuzirian, A. M., Kozlowski, R., Kuzirian, M., and
Lee, T. 2000. Population genetic structure of the goosefish, Lophius
americanus. Biological Bulletin, 199: 227– 228.
Crozier, W. W. 1985. Observations on the food and feeding of the
angler-fish, Lophius piscatorius L., in the northern Irish Sea.
Journal of Fish Biology, 27: 655– 665.
Crozier, W. W. 1987. Biochemical genetic variation and population
structure in angler-fish Lophius piscatorius L. from the Irish Sea
and west of Scotland. Journal of Experimental Marine Biology
and Ecology, 106: 125– 136.
Crozier, W. W. 1988. Comparative electrophoretic examination of the
two European species of angler-fish (Lophiidae): Lophius piscatorius
(L.) and Lophius budegassa (Spinola) and assessment of their
genetic relationship. Comparative Biochemistry and Physiology,
90: 95– 98.
Crozier, W. W. 1989. Age and growth of angler-fish (Lophius
piscatorius L.) in the north Irish Sea. Fisheries Research, 7:
267– 278.
Cullen, D., Johnson, A. K., Lang, K., and Richards, A. 2007.
Comparing age and growth estimates for large monkfish
(Lophius americanus V.) using illicium and vertebral ageing
methods. ICES Document CM 2007/K: 24 Poster.
Duarte, R., Azevedo, M., Landa, J., and Pereda, P. 2001. Reproduction
of anglerfish (Lophius budegassa Spinola and Lophius piscatorius
Linnaeus) from the Atlantic Iberian coast. Fisheries Research, 51:
349– 361.
Duarte, R., Azevedo, M., and Pereda, P. 1997. Study on the growth of
southern black and white monkfish stocks. ICES Journal of Marine
Science, 54: 866– 874.
Duarte, R., Bruno, I., Quincoces, I., Fariña, A. C., and Landa, J. 2004.
Morphometric and meristic study of white and black anglerfish
(Lophius piscatorius and L. budegassa) from the south-west of
Ireland to the south-western Mediterranean. ICES Document
CM 2004/EE: 22. 19 pp.
Duarte, R., Landa, J., Azevedo, M., Sampedro, P., Fariña, A. C., and
Costas, G. 2007. Age – length-keys and catch-at-age of black anglerfish (Lophius budegassa) in Atlantic Iberian waters from 1996 to
2006. ICES Document CM 2007/K: 31 Poster.
Duarte, R., Landa, J., Morgado, C., Marçal, A., Warne, S., Barcala, E.,
Bilbao, E., et al. 2005. Report of the Anglerfish Illicia/Otoliths
Ageing Workshop. IPIMAR, Lisbon. 47 pp.
Dupouy, H., Pajot, R., and Kergoat, B. 1986. Etude de la croissance des
baudroies, Lophius piscatorius et L. budegassa, de L’Atlantique
nord-est obtenue à partir de ĺillicium. Revue des Travaux de
l’Institut des Pêches Maritimes, 48: 107– 131.
Everly, A. W. 2002. Stages of development of the goosefish, Lophius
americanus, and comments on the phylogenetic significance of
the development of the luring apparatus in Lophiiformes.
Environmental Biology of Fishes, 64: 393 – 417.
FAO. 2007. FAO yearbook fishery statistics. Capture production.
Captures 2005, 100/1. FAO, Rome. 539 pp.
FAO. 2008. Fisheries and Aquaculture Department. FAOSTAT.
Electronic Database [data downloaded from FAO website: 7
January 2008]. http://www.fao.org/fishery/species.
A. C. Fariña et al.
1279
Laurenson, C. H. 2006. A note on the development of the embryos of
anglerfish Lophius piscatorius. Journal of Fish Biology, 68:
1287– 1290.
Laurenson, C. H., Johnson, A., and Priede, I. G. 2005. Movements and
growth of monkfish Lophius piscatorius tagged at the Shetland
Islands, northeastern Atlantic. Fisheries Research, 71: 185– 195.
Laurenson, C. H., and Priede, I. G. 2005. The diet and trophic ecology
of anglerfish Lophius piscatorius at the Shetland Islands, UK.
Journal of the Marine Biological Association of the UK, 85:
419– 424.
Laurenson, C. H., Priede, I. G., Bullough, L. W., and Napier, I. R. 2001.
Where are the mature anglerfish? The population biology of
Lophius piscatorius in northern European waters. ICES Document
CM 2001/J: 27. 15 pp.
Leslie, R. W., and Grant, W. S. 1990. Lack of congruence between
genetic and morphological stock structure of the southern
African anglerfish Lophius vomerinus. South African Journal of
Marine Science, 9: 379– 398.
Leslie, R. W., and Grant, W. S. 1994. Meristic and morphometric variation among anglerfish of the genus Lophius (Lophiiformes).
Journal of Zoology, London, 232: 565 –584.
Maartens, L., and Booth, A. J. 2001a. Assessment of the monkfish
Lophius vomerinus resource off Namibia. South African Journal
of Marine Science, 23: 275 – 290.
Maartens, L., and Booth, A. J. 2001b. Quantifying commercial catch
and effort of monkfish Lophius vomerinus and L. vaillanti off
Namibia. South African Journal of Marine Science, 23: 291 – 306.
Maartens, L., and Booth, A. J. 2005. Aspects of the reproductive
biology of monkfish Lophius vomerinus off Namibia. African
Journal of Marine Science, 27: 325 – 329.
Maartens, L., Booth, A. J., and Hecht, T. 1999. The growth of monkfish
Lophius vomerinus with a comparison of otolith and illicia methods
of ageing. Fisheries Research, 44: 139– 148.
Macpherson, E. 1985. Daily ration and feeding periodicity of some
fishes off the coast of Namibia. Marine Ecology Progress Series,
26: 253– 260.
Matsuura, Y., and Yoneda, N. T. 1986. Early development of the
lophiid anglerfish, Lophius gastrophysus. Fishery Bulletin US, 84:
429– 436.
NOAA. 2004. Goosefish (Monkfish) Assessment Summary, 17
October 2005. 14 pp.
O’Sullivan, M., Wright, P. J., Verspoor, E., Knox, D., and Piertney, S.
2006. Absence of spatial and temporal genetic differentiation at
microsatellite loci in north east Atlantic anglerfish (Lophius
piscatorius). Journal of Fish Biology, 69: 261.
Pereda, P., and Landa, J. 1997. Recuperación de dos ejemplares de
rape Lophius piscatorius Linnaeus, 1758 en el stock norte
(divisiones VIIIa y b del CIEM) tras ser marcados en el stock sur
(división VIIIc). Boletı́n del Instituto Español de Oceanografı́a,
13: 91– 94.
Pereda, P., and Olaso, I. 1990. Feeding of hake and monkfish in the
non-trawlable area of the shelf of the Cantabrian Sea. ICES
Document CM 1990/G: 45. 10 pp.
Perez, J. A. A., Pezzuto, P. R., and Andrade, H. A. 2005. Biomass assessment of the monkfish Lophius gastrophysus stock exploited by a
new deep-water fishery in southern Brazil. Fisheries Research, 72:
149– 162.
Perez, J. A. A., Pezzuto, P. R., Andrade, H., Schwingel, P. R.,
Rodrigues-Ribeiro, M., and Wahrlich, R. 2002b. O ordenamento de
uma nova pescaria direcionada ao peixe-sapo (Lophius gastrophysus)
no Sudeste e Sul do Brasil. Nota Tecnica, FACIMAR, 6: 65–83.
Perez, J. A. A., Wahrlich, R., Pezzuto, P. R., and Lopez, F. R. 2002a.
Estrutura e dinâmica da pescaria do peixe-sapo Lophius gastrophysus no sudeste e sul do Brasil. Boletim do Instituto de Pesca, 28:
205– 231.
Pietsch, T. W. 1984. Lophiiformes: development and relationships. In
Ontogeny and Systematics of Fishes, pp. 320– 325. Ed. by H. G.
Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall,
and S. L. Richardson. American Society of Ichthyology and
Herpetology, 1. 760 pp.
Pietsch, T. W., and Grobecker, D. B. 1987. Frogfishes of the World:
Systematics, Zoogeography, and Behavioural Ecology. Stanford
University Press, Stanford 420 pp.
Piñeiro, C. G., Casas, M., and Bañón, R. 2001. The deep-water fisheries
exploited by Spanish fleets in the Northeast Atlantic: a review of the
current status. Fisheries Research, 51: 311– 320.
Preciado, I., Velasco, F., Olaso, I., and Landa, J. 2006. Feeding ecology
of black anglerfish Lophius budegassa: seasonal, bathymetric and
ontogenetic shifts. Journal of the Marine Biological Association
of the UK, 86: 877– 884.
Quincoces, I., Lucio, P., and Santurtún, M. 1998a. Biology of black
anglerfish (Lophius budegassa) in the Bay of Biscay waters, during
1996– 1997. ICES Document CM 1998/O: 47. 28 pp.
Quincoces, I., Santurtún, M., and Lucio, P. 1998b. Biological aspects of
white anglerfish (Lophius piscatorius) in the Bay of Biscay (ICES
Division VIIIa,b,d), in 1996 – 1997. ICES Document CM 1998/O:
48. 29 pp.
Smith, P. J., and Fujio, Y. 1982. Genetic variation in marine teleosts:
high variability in habitat specialists and low variability in habitat
generalists. Marine Biology, 69: 7 –20.
Solmudsson, J. E., Jonsson, E., and Bjornsson, H. 2007. Recent changes
in the distribution of monkfish (Lophius piscatorius) in Icelandic
waters. ICES Document CM 2007/K: 02. 16 pp.
Staudinger, M. D. 2006. Seasonal and size-based predation on two
species of squid by four fish predators on the Northwest Atlantic
continental shelf. Fishery Bulletin US, 104: 605– 615.
Steimle, F. W., Morse, W. W., and Johnson, D. L. 1999. Goosefish,
Lophius americanus, life history and habitat characteristics.
NOAA Technical Memorandum NMFS NE, 127. 31 pp.
Swan, S. C., Wright, P. J., Woodroffe, D. A., Gordon, J. D. M., and
Shimmield, T. 2004. Evidence for geographical isolation of the
early life stages of the white anglerfish, Lophius piscatorius, based
on otolith microchemistry. Journal of the Marine Biological
Association of the UK, 84: 827 – 830.
Tsimenidis, N. C., and Ondrias, J. C. 1980. Growth studies on the
angler-fishes Lophius piscatorius L., 1758 and Lophius budegassa
Spinola, 1807 in Greek waters. Thalassographica, 2: 63– 94.
Valentim, M. F. M., Vianna, M., and Caramaschi, E. P. 2007. Aspects of
the biology and fishery of Lophius gastrophysus Miranda-Ribeiro,
1915 (Lophiiformes, Lophiidae) in southeastern Brazil. ICES
Document CM 2007/K: 19. 11 pp.
Velasco, F., Olaso, I., and Sánchez, F. 1998. The role of cephalopods as
forage for the demersal fish community in the southern Bay of
Biscay. ICES Document CM 1998/M: 26. 15 pp.
Vianna, M., and Almeida, T. 2005. Bony fish bycatch in the southern
Brazil pink shrimp (Farfantepenaeus brasiliensis and F. paulensis)
fishery. Brazilian Archives of Biology and Technology, 48:
611– 623.
von Bertalanffy, L. 1938. A quantitative theory of organic growth.
Human Biology, 10: 181 – 213.
Walmsley, S. A., Leslie, R. W., and Sauer, W. H. H. 2005. The biology
and distribution of the monkfish Lophius vomerinus off South
Africa. African Journal of Marine Science, 27: 157– 168.
Woodroffe, D. A., Wright, P. J., and Gordon, J. D. M. 2003.
Verification of annual increment formation in the white anglerfish,
Lophius piscatorius using the illicia and sagitta otoliths. Fisheries
Research, 60: 345– 356.
Wright, P. J., Woodroffe, D. A., Gibb, F. M., and Gordon, J. D. M.
2002. Verification of first annulus formation in the illicia
and otoliths of white anglerfish, Lophius piscatorius using otolith
microstructure. ICES Journal of Marine Science, 59: 587– 593.
Yoneda, M., Tokimura, M., Fujita, H., Takeshita, N., Takeshita, K.,
Matsuyama, M., and Matsuura, S. 1997. Age and growth of
Downloaded from http://icesjms.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014
Synthesis of the common features and life strategies of Lophius spp.
1280
anglerfish Lophius litulon in the East China Sea and the Yellow Sea.
Fisheries Science, 63: 887– 892.
Yoneda, M., Tokimura, M., Fujita, H., Takeshita, N., Takeshita, K.,
Matsuyama, M., and Matsuura, S. 2001. Reproductive cycle,
fecundity, and seasonal distribution of the anglerfish Lophius
litulon in the East China and Yellow Seas. Fishery Bulletin US,
99: 356– 370.
A. C. Fariña et al.
Yoneda, M., Tokimura, M., Horikawa, H., Yamamoto, K., Matsuyama,
M., and Matsuura, S. 2002. Spawning migration of the anglerfish
Lophius litulon in the East China and Yellow Seas. Fisheries
Science, 68: 310– 313.
doi:10.1093/icesjms/fsn140
Downloaded from http://icesjms.oxfordjournals.org/ at Pennsylvania State University on February 27, 2014