Download END

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Transcript
___________________________________________________________
P.M./Complex/p.11
___________________________________________________________
___________________________________________________________
___________________________________________________________
(ii) ___________________________________________________________
___________________________________________________________
___________________________________________________________
___________________________________________________________
___________________________________________________________
___________________________________________________________
W.34 Q.6, 7
H.W. : W.34 Q.1 – 5
De Moivre's Theorem
If z = r(cos  + i sin  ) where r = z , for any rational number n, then
zn = r n(cos  + i sin  )n = r n(cos n + i sin n ) .
Proof :
Case 1 : Let n be a positive integer.
When n = 1, the statement is obviously true.
Assume zk = r k (cos k + i sin k ) .
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
Case 2 : Let n be a positive rational number, i.e. n =
p and q. Let z
p
q
p
q
= r (cos  + i sin  )
p
for some positive relatively prime integers
q
where - <    .
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
Case 3 : Let n be a negative rational number, then (-n) is a positive rational number. P.M./Complex/p.12
Document related concepts
no text concepts found
Similar