Download Electromagnetism

Document related concepts

Magnetohydrodynamics wikipedia , lookup

Magnetic monopole wikipedia , lookup

Earthing system wikipedia , lookup

Maxwell's equations wikipedia , lookup

Electrical resistivity and conductivity wikipedia , lookup

Insulator (electricity) wikipedia , lookup

High voltage wikipedia , lookup

Superconductivity wikipedia , lookup

Magnetochemistry wikipedia , lookup

Magnet wikipedia , lookup

History of electric power transmission wikipedia , lookup

Alternating current wikipedia , lookup

Hall effect wikipedia , lookup

Galvanometer wikipedia , lookup

Electric charge wikipedia , lookup

Electric machine wikipedia , lookup

Faraday paradox wikipedia , lookup

Multiferroics wikipedia , lookup

Scanning SQUID microscope wikipedia , lookup

Lorentz force wikipedia , lookup

Electromotive force wikipedia , lookup

Force between magnets wikipedia , lookup

Eddy current wikipedia , lookup

Superconducting magnet wikipedia , lookup

Static electricity wikipedia , lookup

Magnetism wikipedia , lookup

History of geomagnetism wikipedia , lookup

Electrification wikipedia , lookup

Electrostatics wikipedia , lookup

Electric current wikipedia , lookup

History of electromagnetic theory wikipedia , lookup

Electricity wikipedia , lookup

History of electrochemistry wikipedia , lookup

Electromagnetism wikipedia , lookup

Transcript
PROJECT GLAD
Mountain View School District
ELECTROMAGNETIC FORCE
(Level 4)
IDEA PAGES
I.
UNIT THEME
Electromagnetic force is one of four main forces in the universe and has
many useful applications in everyday life throughout the world.
Electricity and magnetism are two forms of the single phenomena,
electromagnetic force.
Many scientists have contributed to this field, and their work is built upon
the foundation of previous research and discoveries.
II.
FOCUS/MOTIVATION
Big Books
Read Aloud
Observation Charts
Inquiry Charts
Realia – magnets, iron filings
Picture File Cards
Cognitive Content Dictionary with Signal World
Poetry and Songs
III.
CLOSURE
Process all charts and learnings
Add to living walls
Team Exploration
Personal Exploration
Sharing of Team and Personal Explorations
On-going assessments – Learning logs, Interactive journals
Home-School Connection
Team Jeopardy game
IV.
CONCEPTS
Atoms have negatively charged electrons that spin around a nucleus of
positively charged protons and neutrons.
Charges fill space with an electric field.
Static electricity is associated with the gain or loss of electrons.
Electromagnetic forces can attract or repel.
Opposite electrical charges attract each other, and like electrical charges
repel each other.
Electric current is the flow of electrons.
A complete, continuous path of current is called an electric circuit.
Conductors are materials that allow energy to flow and carry out current.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
1
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 2
Simple, series, and parallel circuits can be built by using materials such as
wires, batteries, and bulbs.
Magnetic materials are sources of magnetic fields.
The Earth has a magnetic field caused by electrical currents.
Magnets have two poles; like poles repel and unlike poles attract.
Electric current, like magnets, produce magnetic fields.
Electromagnets are used in many simple devices, tools, and appliances.
Electromotive forces are produced in a wire whenever a magnetic field cuts
across the wire.
Safety when using electromagnetic forces
V.
VOCABULARY
I. Electricity – Static Electricity/ Electric Currents
atoms, charge, electric field, electricity, circuits, simple circuit, series
circuit, parallel circuit, batteries, bulbs, wire, resistance, current, voltage,
short circuit, fuse, conductor, insulator, superconductor, electrical energy,
potential energy, capacitors, AC – alternating current, DC – direct current,
amperes, coulombs, watts, volts, ohms, joules, circuit breaker, conversion,
switch, lightning, ammeter, voltmeter, multimeter, ohmmeter
II. Magnetism
magnets, repulsion, attraction, repel, attract, compass, magnetic field,
poles, permanent magnets, geographic North Pole and South Pole,
polarized, domains, magnetic materials, ferromagnetic elements
III. Electromagnetic Force
electromagnets, electromotive force, motors, generators, doorbells,
induction, inductors, solenoid coil, temporary magnets, motion, energy,
transformers, power, watts, earphones
VI.
ENGLISH/LANGUAGE ARTS SKILLS
CA STATE STANDARDS – GRADE 4 ENGLISH-LANGUAGE ARTS:
our
READING
1.0 Word Analysis, Fluency, and Systematic Vocabulary Development
Students understand the basic features of reading. They select letter patterns and know
how to translate them into spoken language by using phonics, syllabication, and word
parts. They apply this knowledge to achieve fluent oral and silent reading.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
2
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 3
Word Recognition
1.1 Read narrative and expository text aloud with grade-appropriate fluency and accuracy
and with appropriate pacing, intonation, and expression.
Vocabulary and Concept Development
1.2 Apply knowledge of word origins, derivations, synonyms, antonyms, and idioms to
determine the meaning of words and phrases.
1.3 Use knowledge of root words to determine the meaning of unknown words within a
passage.
1.4 Know common roots and affixes derived from Greek and Latin and use this
knowledge to analyze the meaning of complex words (e.g., international).
1.5 Use a thesaurus to determine related words and concepts.
1.6 Distinguish and interpret words with multiple meanings.
2.0 Reading Comprehension
Students read and understand grade-level-appropriate material. They draw upon a
variety of comprehension strategies as needed (e.g., generating and responding to
essential questions, making predictions, comparing information from several sources).
The selections in Recommended Readings in Literature, Kindergarten Through Grade
Eight illustrate the quality and complexity of the materials to be read by students. In
addition to their regular school reading, students read one-half million words annually,
including a good representation of grade-level-appropriate narrative and expository text
(e.g., classic and contemporary literature, magazines, newspapers, online information).
Structural Features of Informational Materials
2.1 Identify structural patterns found in informational text (e.g., compare and contrast,
cause and effect, sequential or chronological order, proposition and support) to strengthen
comprehension.
Comprehension and Analysis of Grade-Level-Appropriate Text
2.2 Use appropriate strategies when reading for different purposes (e.g., full
comprehension, location of information, personal enjoyment).
2.3 Make and confirm predictions about text by using prior knowledge and ideas
presented in the text itself, including illustrations, titles, topic sentences, important words,
and foreshadowing clues.
2.4 Evaluate new information and hypotheses by testing them against known information
and ideas.
2.5 Compare and contrast information on the same topic after reading several passages or
articles.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
3
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 4
2.6 Distinguish between cause and effect and between fact and opinion in expository text.
2.7 Follow multiple-step instructions in a basic technical manual (e.g., how to use
computer commands or video games).
3.0 Literary Response and Analysis
Students read and respond to a wide variety of significant works of children’s literature.
They distinguish between the structural features of the text and the literary terms or
elements (e.g., theme, plot, setting, characters). The selections in Recommended Readings
in Literature, Kindergarten Through Grade Eight illustrate the quality and complexity of
the materials to be read by students.
Structural Features of Literature
3.1 Describe the structural differences of various imaginative forms of literature,
including fantasies, fables, myths, legends, and fairy tales.
Narrative Analysis of Grade-Level-Appropriate Text
3.2 Identify the main events of the plot, their causes, and the influence of each event on
future actions.
3.3 Use knowledge of the situation and setting and of a character’s traits and motivations
to determine the causes for that character’s actions.
3.4 Compare and contrast tales from different cultures by tracing the exploits of one
character type and develop theories to account for similar tales in diverse cultures (e.g.,
trickster tales).
3.5 Define figurative language (e.g., simile, metaphor, hyperbole, personification) and
identify its use in literary works.
WRITING
1.0 Writing Strategies
Students write clear, coherent sentences and paragraphs that develop a central idea.
Their writing shows they consider the audience and purpose. Students progress through
the stages of the writing process (e.g., prewriting, drafting, revising, editing successive
versions).
Organization and Focus
1.1 Select a focus, an organizational structure, and a point of view based upon purpose,
audience, length, and format requirements.
1.2 Create multiple-paragraph compositions:
a. Provide an introductory paragraph.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
4
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 5
b. Establish and support a central idea with a topic sentence at or near the beginning of
the first paragraph.
c. Include supporting paragraphs with simple facts, details, and explanations.
d. Conclude with a paragraph that summarizes the points.
e. Use correct indention.
1.3 Use traditional structures for conveying information (e.g., chronological order, cause
and effect, similarity and difference, and posing and answering a question).
Penmanship
1.4 Write fluidly and legibly in cursive or joined italic.
Research and Technology
1.5 Quote or paraphrase information sources, citing them appropriately.
1.6 Locate information in reference texts by using organizational features (e.g., prefaces,
appendixes).
1.7 Use various reference materials (e.g., dictionary, thesaurus, card catalog,
encyclopedia, online information) as an aid to writing.
1.8 Understand the organization of almanacs, newspapers, and periodicals and how to use
those print materials.
1.9 Demonstrate basic keyboarding skills and familiarity with computer terminology
(e.g., cursor, software, memory, disk drive, hard drive).
Evaluation and Revision
1.10 Edit and revise selected drafts to improve coherence and progression by adding,
deleting, consolidating, and rearranging text.
2.0 Writing Applications (Genres and Their Characteristics)
Students write compositions that describe and explain familiar objects, events, and
experiences. Student writing demonstrates a command of standard American English
and the drafting, research, and organizational strategies outlined in Writing Standard 1.0.
Using the writing strategies of grade four outlined in Writing Standard 1.0, students:
2.1 Write narratives:
a. Relate ideas, observations, or recollections of an event or experience.
b. Provide a context to enable the reader to imagine the world of the event or experience.
c. Use concrete sensory details.
d. Provide insight into why the selected event or experience is memorable.
2.2 Write responses to literature:
a. Demonstrate an understanding of the literary work.
b. Support judgments through references to both the text and prior knowledge.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
5
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 6
2.3 Write information reports:
a. Frame a central question about an issue or situation.
b. Include facts and details for focus.
c. Draw from more than one source of information (e.g., speakers, books, newspapers,
other media sources).
2.4 Write summaries that contain the main ideas of the reading selection and the most
significant details.
WRITTEN AND ORAL ENGLISH LANGUAGE CONVENTIONS
The standards for written and oral English language conventions have been placed
between those for writing and for listening and speaking because these conventions are
essential to both sets of skills.
1.0 Written and Oral English Language Conventions
Students write and speak with a command of standard English conventions appropriate
to this grade level.
Sentence Structure
1.1 Use simple and compound sentences in writing and speaking.
1.2 Combine short, related sentences with appositives, participial phrases, adjectives,
adverbs, and prepositional phrases.
Grammar
1.3 Identify and use regular and irregular verbs, adverbs, prepositions, and coordinating
conjunctions in writing and speaking.
Punctuation
1.4 Use parentheses, commas in direct quotations, and apostrophes in the possessive case
of nouns and in contractions.
1.5 Use underlining, quotation marks, or italics to identify titles of documents.
Capitalization
1.6 Capitalize names of magazines, newspapers, works of art, musical compositions,
organizations, and the first word in quotations when appropriate.
Spelling
1.7 Spell correctly roots, inflections, suffixes and prefixes, and syllable constructions.
LISTENING AND SPEAKING
1.0 Listening and Speaking Strategies
Students listen critically and respond appropriately to oral communication. They speak
in a manner that guides the listener to understand important ideas by using proper
phrasing, pitch, and modulation.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
6
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 7
Comprehension
1.1 Ask thoughtful questions and respond to relevant questions with appropriate
elaboration in oral settings.
1.2 Summarize major ideas and supporting evidence presented in spoken messages and
formal presentations.
1.3 Identify how language usages (e.g., sayings, expressions) reflect regions and cultures.
1.4 Give precise directions and instructions.
Organization and Delivery of Oral Communication
1.5 Present effective introductions and conclusions that guide and inform the listener’s
understanding of important ideas and evidence.
1.6 Use traditional structures for conveying information (e.g., cause and effect, similarity
and difference, and posing and answering a question).
1.7 Emphasize points in ways that help the listener or viewer to follow important ideas
and concepts.
1.8 Use details, examples, anecdotes, or experiences to explain or clarify information.
1.9 Use volume, pitch, phrasing, pace, modulation, and gestures appropriately to enhance
meaning.
Analysis and Evaluation of Oral Media Communication
1.10 Evaluate the role of the media in focusing attention on events and in forming
opinions on issues.
2.0 Speaking Applications (Genres and Their Characteristics)
Students deliver brief recitations and oral presentations about familiar experiences or
interests that are organized around a coherent thesis statement. Student speaking
demonstrates a command of standard American English and the organizational and
delivery strategies outlined in Listening and Speaking Standard 1.0. Using the speaking
strategies of grade four outlined in Listening and Speaking Standard 1.0, students:
2.1 Make narrative presentations:
a. Relate ideas, observations, or recollections about an event or experience.
b. Provide a context that enables the listener to imagine the circumstances of the event or
experience.
c. Provide insight into why the selected event or experience is memorable.
2.2 Make informational presentations:
a. Frame a key question.
b. Include facts and details that help listeners to focus.
c. Incorporate more than one source of information (e.g., speakers, books, newspapers,
television or radio reports).
2.3 Deliver oral summaries of articles and books that contain the main ideas of the event
or article and the most significant details.
2.4 Recite brief poems (i.e., two or three stanzas), soliloquies, or dramatic dialogues,
using clear diction, tempo, volume, and phrasing.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
7
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 8
CA STATE STANDARDS GRADE 3-5 ENGLISH LANGUAGE DEVELOPMENT
LISTENING AND SPEAKING
Comprehension
B: Speak with few words/sentences, Answer simple questions with one/two word
response; Retell familiar stories/participate in short conversations/using gestures
EI: Ask/answer questions using phrases/simple sentences
Restate/execute multi-step oral directions
I: Ask/answer questions using support elements
EA: Identify main points/support details from content areas
A: Identify main points/support details from stories & subject areas
Respond to & use idiomatic expressions appropriately
Comprehension, Organization & Delivery of Oral Communication
B: Uses common social greetings
EI: Identify main points of simple conversations/stories (read aloud)
Communicate basic needs; Recite rhymes/songs/simple stories
I: Speak with Standard English grammatical forms/sound
Participate in social conversations by asking/answering question
Retell stories/share school activities using vocabulary, descriptive words/paraphrasing
EA: Retell stories including characters, setting, plot, summary, analysis
Use Standard English grammatical forms/sounds/intonation/pitch
Initiate social conversations by asking & answering questions/restating & soliciting
information
Appropriate speaking based on purpose, audience, subject matter; Ask/answer
instructional questions
Use figurative language & idiomatic expressions
A: Question/restate/paraphrase in social conversations
Speak/write based on purpose, audience, & subject matter
Identify main idea, point of view, & fact/fiction in broadcast & print media
Use Standard English grammatical forms/sounds/ intonation/pitch
READING – WORD ANALYSIS (GRADES 3-5 ELD CA STANDARDS)
Concepts about Print, Phonemic Awareness, Decoding & Word Recognition
B: Recognize familiar phonemes
Recognize sound/symbol relationships in own writing
EI: Read orally recognizing /producing phonemes not in primary language
Recognize morphemes in phrases/simple sentences
I: Read aloud with correct pronunciation of most phonemes
Use common morphemes in oral & silent reading
EA: Use knowledge of morphemes to derive meaning from literature/texts in content
areas
A: Use roots & affixes to derive meaning
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
8
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 9
READING – FLUENCY & SYSTEMATIC VOCABULARY DEVELOPMENT
Vocabulary & Concept Development
B: Read aloud simple words in stories/games Respond to social & academic
interactions (simple questions/answers)
Demonstrate comprehension of simple vocabulary with action
Retell simple stories with drawings, words, phrases
Uses phrases/single word to communicate basic needs
EI: Use content vocabulary in discussions/reading
Read simple vocabulary, phrases, & sentences independently
Use morphemes, phonics, syntax to decode & comprehend words
Recognize & correct grammar, usage, word choice in speaking or reading aloud
Read own narrative & expository text aloud with pacing, intonation, and expression
I: Create dictionary of frequently used words
Decode/comprehend meaning of unfamiliar words in text
Recognize & correct grammar, usage, word choice in speaking or reading aloud
Read grade level narrative/expository text aloud with pacing, intonation, expression
Use context vocabulary in discussions/reading
Recognize common roots & affixes
EA: Use morphemes, phonics, syntax to decode/comprehend words
Recognize multiple meaning words in content literature & texts
Use common roots & affixes
Use standard dictionary to find meanings
Recognize analogies & metaphors in content literature & texts
Use skills/knowledge to achieve independent reading
Use idioms in discussions & reading
Read complex narrative & expository texts aloud with pacing, intonation, and expression
A: Apply common roots & affixes knowledge to vocabulary
Recognize multiple meaning words
Apply academic & social vocabulary to achieve independent reading;
Use idioms, analogies, & metaphors in discussion & reading
Use standard dictionary to find meanings
Read narrative & expository text aloud with pacing, and intonation
Reading Comprehension
B: Answer fact questions using one/two word response
Connect simple test read aloud to personal experience
Understand and follow one-step directions
Sequence events from stories read aloud using key words/phrase
Identify main idea using key words/phrases
Identify text features: title/table of contents/chapter heading
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
9
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 10
EI: Use simple sentences to give details from simple stories; Connect text to personal
experience; Follow simple two-step directions; Identify sequence of text using simple
sentences; Read & identify main ideas to draw inferences; Identify text features: title,
table of contents, chapter headings; Identify fact/opinion in grade level text read aloud to
students
I: Orally respond to comprehension questions about written text; Read text features:
titles, table of contents, headings, diagrams, charts, glossaries, and indexes; Identify
main idea to make predictions & support details; Orally describe connections between
text and personal experience; Follow multi-step directions for classroom activities;
Identify example of fact/opinion and cause/effect in literature and content texts
EA: Give main idea with supporting detail from grade level text
Generate & respond to text-related comprehension questions
Describe relationships between text & personal experience
Identify function of text features: format/diagrams/charts/glossary
Draw conclusions & make inferences using text resources
Find examples of fact, opinion, inference, & cause/effect in text
Identify organizational patterns in text: sequence, chronology
A: Make inferences/generalizations, draw conclusions from grade level text resources
Describe main ideas with support detail from text
Identify patterns in text: compare/contrast, sequence/cause/effect
WRITING STRATEGIES AND APPLICATION
Penmanship, Organization, & Focus
B: Write alphabet
Label key parts of common object
Create simple sentences/phrases
Write brief narratives/stories using few standard grammatical forms
EI: Write narratives that include setting and character
Respond to literature using simple sentences, drawings, lists, chart
Write paragraphs of at least four sentences
Write words/simple sentences in content areas
Write friendly letter
Produce independent writing
I: Narrate sequence of events
Produce independent writing
Use variety of genres in writing
Create paragraph developing central idea using grammatical form
Use complex vocabulary & sentences in all content areas
Write a letter with detailed sentences
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
10
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 11
EA: Write detailed summary of story
Arrange compositions with organizational patterns
Independently write responses to literature
Use complex vocabulary & sentences in all content areas
Write a persuasive letter with relevant evidence
Write multi-paragraph narrative & expository for content areas
A: Write short narrative for all content areas
Write persuasive composition
Write narratives that describe setting, character, objects, and events
Write multi-paragraph narrative & expository compositions
Independently use all steps of writing process
Writing Conventions
B: Begin own name and sentences with a capital letter
Use period at end of sentence
EI: Begin proper nouns & sentences with capital letter
Use period at end of sentence, and use some commas
Edit for basic conventions
I: Produce independent writing
Use standard word order
EA: Produce independent writing with correct capitals, punctuation, and spelling
Use standard word order
Edit for basic conventions
A: Use correct parts of speech
Edit for punctuation, capitalization, and spelling
Produce writing with command of standard conventions
READING LITERARY RESPONSE AND ANALYSIS
Narrative Analysis of Grade-Level Appropriate Text
B: One/two-word oral responses to factual comprehension questions
Word/phrase oral response identifying characters and settings
Distinguish between fiction & non-fiction
Identify fairy tales, folktale, myth, and legend using lists, charts, and tables
EI: Orally answer factual questions using simple sentences
Orally identify main events in plot; Recite simple poems
Orally describe setting of literature piece; Orally describe character of a selection
Orally distinguish among poetry, drama, and short story
I: Paraphrase response to text using expanded vocabulary
Apply knowledge of language to derive meaning from text
EA: Describe figurative language (simile, metaphor, personification)
Distinguish literary connotations from culture to culture
Identify motives of characters
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
11
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 12
Describe themes stated directly
Identify speaker/narrator in text
Identify main problem of plot and how it is resolved
Recognize first & third person in literary text
A: Describe characteristics of poetry, drama, fiction, & non-fiction
Evaluate author’s use of techniques to influence reader
Describe directly stated and implied themes
Compare and contrast motives of characters in work of fiction
VII.
MATH/SCIENCE/SOCIAL STUDIES SKILLS/UNDERSTANDING
CA STATE FRAMEWORK SCIENCE CONTENT STANDARDS FOR GRADE 4
PHYSICAL SCIENCE:
1. Electricity and magnetism are related effects that have many useful applications in
everyday life. As a basis for understanding this concept:
a. Students know how to design and build simple series and parallel circuits by
using components such as wires, batteries, and bulbs.
b. Students know how to build a simple compass and use it to detect magnetic
effects, including Earth’s magnetic field.
c. Students know electric currents produce magnetic fields and know how to
build a simple electromagnet.
d. Students know the role of electromagnets in the construction of electric
motors, electric generators, and simple devices, such as doorbells and
earphones.
e. Students know electrically charged objects attract or repel each other.
f. Students know that magnets have two poles (north and south) and that like
poles repel each other while unlike poles attract each other.
g. Students know electrical energy can be converted to heat, light, and motion.
INVESTIGATION AND EXPERIMENTATION
6. Scientific progress is made by asking meaningful questions and conducting careful
investigations. As a basis for understanding this concept and addressing the content in
the other three strands, students should develop their own questions and perform
investigations. Students will:
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
12
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 13
a. Differentiate observation from inference (interpretation) and know scientists’
explanations come partly from what they observe and partly from how they
interpret their observations.
b. Measure and estimate the weight, length, or volume of objects.
c. Formulate and justify predictions based on cause-and-effect relationships.
d. Conduct multiple trials to test a prediction and draw conclusions about the
relationships between predictions and results.
e. Construct and interpret graphs from measurements.
f. Follow a set of written instructions for a scientific investigation.
CA HISTORY/SOCIAL SCIENCE CONTENT STANDARDS – GRADE 4
4.1 Students demonstrate a understanding of the physical and human
geographic features that define places a regions in California.
2. Distinguish between the North and South Poles
VIII. RESOURCES AND MATERIALS
Callan, Jim. Amazing Scientists; John Wiley and Sons, Inc., NY 1997
Christelow, Eileen. What Do Authors Do?, Clarion Books, NY 1995
Cole, Joanna & Degen, Bruce. Magic School Bus and the Electric Field Trip;
Scholastic, NY 1997
Da Silva, Wilson. A Guide to Modern Science, Fog City Press, CA 2002
Lafferty, Peter. Magnets to Generators; Gloucester Press, NY 1989
Lehrman, Robert. Physics, The Easy Way, Barron’s Educational Series, NY 1998
Oxlade, Chris. States of Matter; Heinemann Library, Chicago, Il 2002
Oxlade, Chris. Atoms; Heinemann Library, Chicago, Il 2002
Parker, Steve. Electricity; Dorling Kindersly, Inc., NY 1992
Tocci, Salvatore. The Periodic Table; Children’s Press, NY 2004
Raintree-Steck-Vaughn. Electricity and Magnetism; NY 2002
Ramsey, W. Physcial Science, Holt, NY 1997
Schreiber, Anne. Magnets, Scholastic, NY 2003
Stockley, C. Usborne Illustrated Dictionary of Physics, EDC Publishing 2000
VanCleave, Janice. Magnets, John Wiley & Sons, NY 1993
Whalley, Margaret. Experiment with Magnets and Electricity; Lerner Publications
Co., Minneapolis, Minnesota 1994
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
13
Project GLAD
ELECTROMAGNETISM
IDEA PAGES
Page 14
District Texts
Discovery Works, Grade 4, Houghton Mifflin – Science
Avenues, Grade 5, Hampton-Brown
Internet Resources
Types of Magnetism, Materials by Design www.mse.cornell.edu/courses
Circuits www.schoolscience.co.uk/content/3/physics
Electricity & Static Electricity www.sciencemadesimple.com/static
Ultra simple Electric Generator www.amasci.com/amateur
Circuit Diagrams www.ndt-ed.org/EducationResources
Scientists www.enchantedlearning.com
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
14
PROJECT GLAD
Mountain View School District
ELECTROMAGNETIC FORCE
(Level 4)
UNIT PLANNING PAGES
I. FOCUS/MOTIVATION
Observation Charts
Inquiry Charts
Direct Experiences
Realia
Read Aloud
Big Book
Cognitive Content Dictionary
Learning Logs
Scientific Awards
Comparative Input
II. INPUT
Pictorial Inputs – atom, 3 states of matter, electrical charges and fields,
circuits, magnets – Earth, permanent, electromagnets
Narrative Input
Comparative Input
10/2 lecture
Read Aloud/Shared Book Experiences
Realia
Demonstrations/Explorations/ Labs (static electricity, compass, circuits,
magnetic fields)
Videos – Bill Nye, Lightning …
Listen and Sketch
Timeline of Scientists and their contributions
III. GUIDED ORAL PRACTICE
T-Graph
Cooperative learning techniques for cross-cultural respect and
decision making
Personal Interaction for bonding/respect
Exploration Report/Picture File Cards
Poetry/Chants/Songs/Rap
Farmer in the Dell
Process Grid
Team Points
Flexible groupings
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
15
PROJECT GLAD
ELECTROMAGNETIC FORCE
UNIT PLANNING PAGES
Page 2
Group Frame
On-going processing of charts
IV. READING/WRITING
Total class modeling – English, Primary language, all genres
Small Groups – Cooperative Tasks, Flex Groupings – by need & choice
Focused reading
Shared, guided, and flexible group reading
Interactive reading
Cooperative Strip paragraphs
Expert Groups
Mind Mapping
Oral book sharing
Flip chants
Ear-to-ear reading
Big Books
Textbooks and trade books
Reader’s Theater
Group Frame
Individual Practice and Choice (Student’s own language)
SSR
SSW
All genres and domains
Interactive Journals, Learning Logs, Mind-mapping
International Library
Read Aloud by teacher and students of a variety of literature
including students’ work
Writer’s Workshop
Choice
Metacognition – Mini-lesson and Conferencing
Author’s Chair (Works in Progress only)
Author’s Day (Sharing of Completed Works)
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
16
PROJECT GLAD
ELECTROMAGNETIC FORCE
UNIT PLANNING PAGES
Page 3
V. EXTENDED ACTIVITIES FOR INTEGRATION (INTELLIGENCES)
Role-playing/drama
Guided imagery
Scientific Explorations
Music/Movement
Poetry
Art
i-Movie
Field trips
Computer
VI.
CLOSURE/EVALUATION
Personal exploration
Rubrics
Assessments matched to outcomes/standards
Practical – building of circuits, compass, electromagnet
Team exploration
Jeopardy Game
Process charts and learnings
On-going assessments
Group Frames, Learning Logs, Interactive Journals
Running Records/Writing Inventories
Home-School Connection/Family Involvement
Alternative assessment strategies
Videos, plays, presentations, demonstrations, building projects,
Big Books, Portfolios
District tests
Teaching of study skills and test-taking skills
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
17
PROJECT GLAD
Mountain View School District
ELECTROMAGNETIC FORCE
(Level 4)
SAMPLE DAILY LESSON PLANS
DAY 1: (Electromagnetism)
FOCUS/MOTIVATION
Cognitive Content Dictionary with Signal Word
Scientist Awards – standards
Observation Charts
Inquiry Chart
Big Book
INPUT
Timeline
Pictorial Input – Magnets
10/2 Discussions, primary language groups
Learning Log
ELD Review
Read Aloud
GUIDED ORAL PRACTICE
Poems/Songs – Matter, I’m a Magnet
T-graph
Exploration Report/Picture File Cards
INPUT
Comparative Input Chart
Learning Log
ELD Review
READING/WRITING
Writer’s Workshop
Mini-lesson
Write
Author’s Chair
CLOSURE
Process charts
Interactive Journals
Home/School Connection
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
18
PROJECT GLAD
ELECTROMAGNETIC FORCE
SAMPLE DAILY LESSON PLANS
Page 2
DAY 2: (Electromagnetism)
FOCUS/MOTIVATION
Cognitive Content Dictionary with Signal Word
Process Home/School Connection
Review with Word Cards – Timeline, Magnets Input, Comparative Input
Poem – Electrons Here, Electrons There
Big Book Review
Realia
INPUT
Narrative Input
Learning Log
10/2
GUIDED ORAL PRACTICE
Chant – I Know a Physicist
Process T-graph
Personal Interaction
INPUT (not for demo purposes/ for classroom implementation)
Pictorial Input - Electricity
Learning Log
ELD Review
READING/WRITING
Flexible Groups – Expert Groups
Team Tasks
Writer’s Workshop
Mini-lesson
Write
Author’s Chair
CLOSURE
Process Inquiry Chart
Interactive Journals
Home/School Connection
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
19
PROJECT GLAD
ELECTROMAGNETIC FORCE
SAMPLE DAILY LESSON PLANS
Page 3
DAY 3: (Electromagnetism)
FOCUS/MOTIVATION
Cognitive Content Dictionary with Signal Word
Process Home/School Connection
Highlight Poetry
Big Book/Read Aloud
Review Input Charts
Narrative input – Conversation Bubbles/Word Card Review
INPUT
Direct Experience
Learning Logs
Listen and Sketch – The Legend of Magnes
GUIDED ORAL PRACTICE
Farmer in the Dell (Sentence Patterning Chart - SPC)
Reading/Trading
Flip Chants
Poetry
READING/WRITING
Flex Groups – Expert Groups
Team Tasks
GUIDED ORAL PRACTICE
Process Grid – Numbered Heads Together
READING/WRITING
Cooperative Strip Paragraph
Respond, Revise, Edit
Strip Book
Reading/Writing Workshop
Mini-lesson, Write, Author’s Chair
CLOSURE
Process Inquiry Chart
Journals
Home/School Connection
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
20
PROJECT GLAD
ELECTROMAGNETIC FORCE
SAMPLE DAILY LESSON PLANS
Page 4
DAY 4: (Electromagnetism)
FOCUS/MOTIVATION
Cognitive Content Dictionary with Signal Word
Student’s Choice - Stumper Word
Process Home/School Connection
Poetry
INPUT
Story Map of Narrative
Read Aloud
READING/WRITING
Flexible Group Reading
Team Tasks
Clunkers and Links
Group Frame - ELD Retell (Narrative)
Reading/Writing Workshop
GUIDED ORAL PRACTICE
Chants/Poetry
CLOSURE
Turn in Learning Logs for Evaluation
Process Charts
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
21
PROJECT GLAD
ELECTROMAGNETIC FORCE
SAMPLE DAILY LESSON PLANS
Page 5
DAY 5: (Electromagnetism)
FOCUS/MOTIVATION
Cognitive Content Dictionary with Signal Word
Student Choice – Stumper Word
Process Home/School Connection
GUIDED ORAL PRACTICE
Chants/Poetry
READING/WRITING
Flex Group Reading with Cooperative Strip Paragraph
Team Tasks
Team Presentations
Found Poetry
Ear to Ear reading with Poetry Booklet
Reading/Writing Workshop
Mini-lesson
Write
Author’s Chair
Focused Reading - Read the Walls
Personal CCD
CLOSURE
Presentations/Publishing
Letter Home
Process Inquiry Chart
Process Week – “What helped you learn?”
Chant – Superstar
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
22
I JUST THOUGHT YOU’D LIKE TO KNOW…
about ELECTRICITY and MAGNETISM
By Lillie Ruvalcaba
I just thought you’d like to know…
Our earth is a giant magnet. A compass detects magnetic fields, including
Earth’s magnetic field.
I just thought you’d like to know.
I just thought you’d like to know…
Magnets have two poles, north and south. Like poles repel each other and
unlike poles attract each other.
I just thought you’d like to know.
I just thought you’d like to know…
Electrically charged objects attract and repel each other.
I just thought you’d like to know.
I just thought you’d like to know…
Electric currents produce magnetic fields. You can even build your own
simple electromagnet!
I just thought you’d like to know.
I just thought you’d like to know…
Both simple series and parallel series circuits use things like wires, batteries
and bulbs.
I just thought you’d like to know.
I just thought you’d like to know…
Electrical energy can be converted to heat, light and motion.
I just thought you’d like to know.
I just thought you’d like to know…
Electricity and magnetism are related effects that have many useful
applications in everyday life.
I just thought you’d like to know.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
23
The Important Book about Electricity
By Marita d’Arnaud
An important thing to remember about electricity is that it has many useful applications
in everyday life.
Electricity is one form of electromagnetic force. A force is a push or a pull.
Electricity is related to magnetism, the other form of electromagnetic force.
Electrical energy, which comes from charged particles, allows us do many things
like play a PlayStation II game, toast bread in a toaster, and drive an
electric car.
But an important thing to remember about electricity is that it has many useful
applications in everyday life.
An important thing to remember about electricity is that it has many useful applications
in everyday life.
Negatively charged electrons(-) in atoms spin around a nucleus of positively
charged protons(+) and neutrons(0), which have no charge.
When atoms lose or gain electrons, the atoms become charged.
Charges fill space with an electric field.
Opposite charges attract each other, and like charges repel each other.
But an important thing to remember about electricity is that it has many useful
applications in everyday life.
An important thing to remember about electricity is that it has many useful applications
in everyday life.
When negative charges move from one object to another, charge builds up on
both objects.
One object will have a positive charge. The other will have a negative charge.
This buildup of charges is called static electricity.
Built-up charges can leak out harmlessly or “jump” causing an electrical
discharge, like lightning or an electrical shock.
But an important thing to remember about electricity is that it has many useful
applications in everyday life.
An important thing to remember about electricity is that it has many useful applications
in everyday life.
A stream of moving electrons produces an electric current.
An electric circuit is a complete, continuous path of current.
Conductors, like copper and aluminum, are materials that allow current to flow
easily. Insulators, like rubber and plastic, do not allow current to flow.
But an important thing to remember about electricity is that it has many useful
applications in everyday life.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
24
An important thing to remember about electricity is that it has many useful applications
in everyday life.
Simple, series, and parallel circuits can be built using materials such as wires,
batteries, switches, and bulbs.
As current flows through a bulb, electrical energy is converted to heat and light
energy.
As electric current flows, a magnetic field is produced. A moving magnetic field
creates an electric current.
Electricity allows us to turn on lights, play videogames, use a microwave, and
watch television.
But an important thing to remember about electricity is that it has many useful
applications in everyday life.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
25
The Important Book about Magnetism
By Marita d’Arnaud
An important thing to remember about magnetism is that it has many useful applications
in everyday life.
Magnetism is one form of electromagnetic force. A force is a push or a pull.
Magnetism is related to electricity, the other form of electromagnetic force.
Can openers, magnetic levitation (Maglev) trains, and screwdrivers use magnets.
But an important thing to remember about magnetism is that it has many useful
applications in everyday life.
An important thing to remember about magnetism is that it has many useful applications
in everyday life.
Magnetic materials include metals and metal alloys like iron, nickel, and cobalt.
Magnets come in different sizes and shapes such as rings, bars, and horseshoes.
There are temporary magnets and permanent magnets.
But an important thing to remember about magnetism is that it has many useful
applications in everyday life.
An important thing to remember about magnetism is that it has many useful applications
in everyday life.
A magnet has two poles, a north pole and a south pole.
Each magnet produces a magnetic field traveling from north to south that
curves around the magnet.
Unlike poles attract, and like poles repel. The closer the poles are, the
stronger the force.
Electric currents produce magnetic fields.
But an important thing to remember about magnetism is that it has many useful
applications in everyday life.
An important thing to remember about magnetism is that it has many useful applications
in everyday life.
Our earth, with a nickel and iron core, is a giant magnet that has a magnetic north
pole and south pole.
Scientists theorize that moving electric currents inside the earth create its
magnetic field.
A compass is a magnetized needle that points to the earth’s magnetic north pole.
The earth’s magnetic poles are at least one thousand miles away from the earth’s
geographic poles.
But an important thing to remember about magnetism is that it has many useful
applications in everyday life.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
26
An important thing to remember about magnetism is that it has many useful applications
in everyday life.
Just as an electric current produces a magnetic field, a changing magnetic field
produces an electric current.
A coiled wire with an electric current has a stronger magnetic field than a straight
wire with current.
Inserting an iron bar into the coil creates an electromagnet, with an even stronger
field.
Electromagnets are used in electric generators, motors, and simple devices such as
doorbells, VCRs, telephones, and loudspeakers.
But an important thing to remember about magnetism is that it has many useful
applications in everyday life.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
27
THE LEGEND OF MAGNES
A legend is a story about an event that happened a long time
ago. Usually, a legend has some truth to it, but untruths have often
been added through the years. There is a Greek legend about how
magnets were first discovered.
Thousands of years ago, an old man named Magnes
was herding his sheep. As he walked his sheep through the
fields, he climbed on a large, black rock to get a better
view.
Something strange happened. The nails in his shoes
and the metal at the tip of his shepherd’s staff stuck to the
rock! He lifted his feet out of his shoes and left his staff to
go tell the townspeople of Magnesia what happened.
They came to look at the mysterious rock. The
townspeople were amazed. Magnes then removed his
shoes and staff and went on his way. The townspeople
named the black rock “magnetite” after the old man and
the town nearby.
Over the years, legends were made up about the power of magnetite.
Some legends told of magnetite having magical powers. Others
told of magnetite healing the sick and driving evil spirits away.
Sailors told legends of ships made of iron being attracted to
magnetite rocks only to be crushed and shipwrecked.
From Teacher Created Materials
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
28
Famous Scientists Timeline
L. Ruvalcaba MVSD GLAD 2005
470 BC
Democritus
Greek philosopher - theorizes about the atom.
Theorized that all matter was made up of invisible
particles called atoms. His idea was rejected at the
time because it could not be proved. He was even
suspected of being insane.
625-547 BC
Thales
Ancient Greek scientist, Thales, observed that an
electric charge could be generated by rubbing
amber with a piece of wool or fur, the greek word
for electron
1600
William Gilbert
English Scientist - first to study about the
lines of force around magnets. He theorized
that Earth was a large magnet and exerted
a magnetic influence (gravity) throughout
the solar system. He was the first scientist
to use the word electric to describe one
object’s power to attract others. He made
the first electroscope, an instrument that
detects the presence of an electric charge.
1687
Sir Isaac Newton
British Scientist - Explained how all objects
in the universe, even the planets, move. His laws of
motion used math and he made predictions, for the
first time. Scientists still consider Newton the most
famous physicist ever.
1752
Benjamin Franklin
1769
James Watt
American statesman and inventor. He proved
that lightning was static electricity, invented the
Franklin stove, bifocal glasses, and the lightning
rod.
Scottish engineer – made important improvements
to the steam engine, thereby helping to stimulate
the Industrial Revolution. He was the first person
who coined the term, horsepower. The basic
measure of electric power is the watt, which was
named in his honor.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
29
1800
Alessandro Volta
Italian physicist. Discovered that 2 metals in
contact could create an electric current. Created the
first electric battery and condenser. Invented the
electrophorous to show static electricity, a device
with two metal plates that can make an electrical
charge. Volt (modern unit of electric potential,
which is the strength or “electric push” of the
flowing charge) named after him
1803 John Dalton
English scientist provided proof that atoms
existed. His atomic theory states that all matter is
made up of small, indivisible particles called atoms.
Atoms of different particles have different
properties, but all atoms of the same element are
identical. Atoms cannot be created or destroyed.
1819 Hans Christian Oersted
Danish Scientist – discovered electromagnetism
He was conducting an experiment with an electrical
circuit and noticed that when he turned the circuit
on and off the needle of his nearby compass would
jump. He concluded that electricity produces
magnetism. His discovery became the basis of the
electric motor and the electromagnet.
1826 Georg Ohm
Made an important discovery about resistance. He
studied the relationship between the amount of
current that flowed through a wire(amperage) and
the amount of EMF that drove the current (voltage).
1830’s Andre Ampere
French scientist - Discovered that if he passed an
electric current through a coil of wire, the wire
acted like a magnet. The basic unit of electric
current flow is named “ampere.”
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
30
1831 Michael Faraday
British Scientist – Conducted an experiment devised
to bring about the conversion of magnetism to
electricity. He imagined that there were “lines of
force” stretching out in space from a magnet. He
discovered electromagnetic induction, a varying or
moving magnetic field produces an electromotive
force emf in a nearby conductor, and thus an
electric current if the conductor is part of a circuit.
Constructed the first electric generator.
1847 Alexander Graham Bell
Born in Scotland, emigrated to America in
1871. American scientist and inventor. He found
that different voice tones could vary the electrical
signals flowing in a wire, by the process of
electromagnetic induction. Invented an early
version of the telephone.
1865
Scottish physicist. Developed the math to
describe electric and magnetic fields and how they
affect each other. He showed that magnetic fields
and electric fields always exist together, so the
field is really an electromagnetic field. Maxwell
also produced a theory about what light is and how
it moves.
James Clerk Maxwell
1873 Demitri Mendeleyev
Siberian scientist devised his periodic table of
elements. He used the atomic weights of elements
and grouped the elements according to similar
properties, such as how they react with oxygen.
This gave him seven different groups of elements.
He made the claim that “properties of the elements
were periodic functions of their atomic
weights.”Mendeleyev called this the periodic table
of elements because the chemical properties
repeated themselves every seven elements.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
31
1877 Thomas Edison
American Inventor He invented the phonograph
and the incandescent lightbulb, had more than
1,300 inventions in his lifetime
1881 Lewis H. Latimer
African American inventor - He made incandescent
lightblulb last much longer by using inexpensive
carbon filaments.
1893 Nikola Tesla
Croatian Scientist – invented AC power (alternating
currents) An alternating current flows alternately in
either direction, and its voltage can be easily
controlled. Tesla showed that AC power could be
transmitted efficiently at high voltages over great
distances. When it reached the points it was to be
transferred into homes, devices called transformers
could decrease the voltage to safe levels. Tesla
invented all the different components of the entire
AC system – generator, transformer, transmission
lines, motor and lights.
1898
Marie Curie
Polish scientist – discovered the element
radium. Famous for her discoveries in field of
radioactivity. Discovered that a small amount of
radium would destroy human tissue.
1905
Albert Einstein
German scientist – Most famous for his theory of
relativity. One of the most famous discoveries in all
scientific history was the amount of energy stored
in matter. If the amount of energy that is stored in
just one pound of coal could be converted into
energy it would produce the amount of electricity
the entire world uses in one day.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
32
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
33
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
34
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
35
NARRATIVE INPUT
Katrina Faber, her sister Carla, and their parents are spending
Saturday afternoon at the Franklin Institute Science Museum in
Philadelphia. “Hey kids, come look at this! It’s an exhibit on Ben
Franklin’s inventions. He was from Philly, you know, just like us,” said
Mrs. Faber.
“No, he was born in Boston!” Carla quickly added. Mrs. Faber stated
that he lived in Philadelphia, Ben’s favorite city, most of his life.
“Wow! This is pretty incredible! Look at all the things he invented.
Wood stoves…bifocals…” Mr. Faber exclaimed. Katrina wanted to know
what bifocals were. Carla explained that they are special glasses with two
lenses. The top is for viewing long distances while the bottom half is for
reading. Then Mr. Faber continued to explain how old Ben got tired of
switching his regular glasses to his reading glasses that he combined the two
and invented bifocals.
1
Katrina sat down on a bench while her family continued looking at
exhibits. As Mrs. Faber started talking about Franklin discovering
electricity, Katrina noticed an oddly dressed elderly man. He was wearing a
shiny suit with ruffles at the wrists, and his pants went down to his knees.
His shoes had silver buckles on them. Still, Katrina was sure she’d seen him
somewhere before. “It never happened,” the stranger spoke.
“What?” asked Katrina.
“I never discovered electricity.” Katrina stared at the stranger and
was dumbfounded. “What, you don’t recognize old Ben? Ben Franklin?”
Ben said.
“You can’t be Ben Franklin, he was born a million years ago!”
Katrina remarked.
“Would you offer him a seat if he were here?” asked Ben. Katrina
nodded.
2
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
36
Ben sat down next to Katrina and kicked off his shoes and asked her
what they were talking about. Katrina couldn’t believe that he had already
forgotten what they were discussing. “Electricity, Mr. Franklin,” she
replied.
3
Ben chuckled and then began to explain how many people thought he
discovered electricity however it was the Greeks who discovered it about
3,000 years ago in 600 B.C.E. They weren’t sure how to use it. All they
knew was that rubbing amber with a piece of wool would create static
electricity. He told her another example of static electricity is when a person
takes off their hat in the winter and their hair stands straight up. “That’s
electricity?” Katrina asked.
“Sure. It’s just like your TV,” Ben answered. Then Katrina gave Ben
a puzzled look and he replied, “I keep up. Here, close your eyes for a
second and I’ll show you exactly how I discovered that lightning was made
out of electricity.”
4
When Katrina opened her eyes, she found herself in a living room of a
house. There was a paper on the table that resembled a newspaper with date
1752. Ben was there, with his shoes on, sitting in a chair talking to his son
named William. He asked him what he was doing for the day and if he
wanted to help perform an experiment. She could then hear Ben saying,
“It’s going to be a rainy evening. It’s perfect weather for our electrical
experiment. Let’s get started.” Katrina watched as they made a kite out of
two crossed strips of cedar wood and an old handkerchief. Then they
attached a piece of wire to one of the strips. She wondered if they needed
her help or if they could even see her.
5
The two went outside and Katrina followed. She heard Ben tell
William how electricity was discovered hundreds of years ago. Yet, nobody
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
37
really knew what it was, or how to use it, or if it could be used. “Is it
magic?” she heard William ask.
“It’s not magic. I suspect it comes from nature. My guess is that
lightning is made of electricity. That’s what I hope we can prove tonight.
Metal attracts electricity. I think it attracts lightning, too,” Ben said. He
then took the kite and tied a large metal key to it. Ben held onto the string as
William ran with the kite. A strong wind took the kite high into the air.
6
“Hey wait! That’s really dangerous! I heard about someone who got
hit by lightning on a golf course and got badly hurt! Hey! Can your hear
me?” Katrina yelled. Ben and his son didn’t hear Katrina’s warning.
“Direct me towards the darkest cloud, William!” Ben instructed.
Lightning was flashing all around them, and finally it struck the wire on the
kite. Ben reached for the key and yelled, “Yeow!” A spark flew off the key
and zapped him.
“Did electricity travel down the string? Was that spark electricity?”
William asked.
“It most certainly was! We’ve done it, William! We’ve proven that
lightning is made of electricity!” exclaimed Ben.
7
“How does this help us?” asked William. Ben put his arm around
William and began telling him how he thought he could prevent houses
from burning down to the ground that get struck by lightning. He explained
that lightning is attracted to metal, and that lightning usually strikes the
tallest thing around. Katrina then heard Ben tell his son that if he put a tall
metal pole on every house, the lightning would hit the pole instead of the
house. “Katrina, it’s time to go!” William said.
“What? You can see me?” Katrina said.
“I said it’s time to go!” William said again.
8
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
38
Katrina blinked and found that she was sitting on the bench at the
Franklin Institute. Katrina’s dad was shaking her on the shoulder. “Hey
Katrina, it’s time to go! I said, it’s time to go! Have you been sleeping on
this bench all afternoon?” Mr. Faber asked.
Carla laughed, “I’ll bet you’ve really learned a lot.”
“I learned plenty today,” Katrina responded. She then went into detail
about the story of Ben and his son discovering that lightning was made of
electricity and how he put that discovery into inventing the lightning rod.
“Where did you learn that?” asked Mrs. Faber.
“Ben Franklin told me. I mean, I must have read it somewhere,”
Katrina stammered. Mr. Faber had then said that it was time to hit the road.
9
“I need to get a drink of water first. I’ll hurry,” Katrina said. Just as
she was getting a drink she noticed someone carefully studying the
electricity exhibit. It was Ben. “Mr. Franklin, your still here. I told my
parents about the lightning rod. That was great,” Katrina said. With a smile
on Ben’s face, he told Katrina of some other amazing accomplishments
during his time. He told her how he formed the first fire department,
established the first free library, invented the wood stove, signed the
Declaration of Independence, and the Constitution. He even went to France
to raise money for the American Revolution. “Wow, I can’t even finish all
of my homework sometimes!” Katrina said.
10
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
39
“People can accomplish a lot if they believe in themselves and work
hard. Nothing is so complicated that we can’t understand it. All you have
to do is slow down and think it through carefully. Pretty soon it’ll make
sense to you. When I was young there were a million things we didn’t
understand about science and medicine. But, I read everything I could, spent
lots of time thinking about things. Try it. You’ll be surprised what you
might discover.” Ben said. Just then Ben pulled a penny from behind
Katrina’s ear and handed it to her. “Here’s a penny for your thoughts,” he
said.
“How did you do that?” Katrina was shocked.
“It’s magic,” Ben replied.
“Thanks, Mr. Franklin. Thanks for everything,” Katrina said
11
That night Mrs. Faber went to tuck Katrina into bed. They discussed
the events of the day and their favorite exhibits. As Mrs. Faber went to turn
the light off she noticed something shiny on Katrina’s desk and picked it up.
“This penny is from 1789. Where did you get this?” Mrs. Faber asked.
Katrina smiled, “An ‘old’ friend gave it to me.”
12
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
40
“Hey kids, come look at this! It’s
an exhibit on Ben Franklin’s inventions.
He was from Philly, you know, just like
us.”
“Wow! This is pretty incredible!
Look at all the things he invented.
Wood stoves…bifocals…”
“I never discovered electricity.”
“That’s electricity?”
“Sure. It’s just like your T.V.”
“I keep up. Close your eyes for
a second and I’ll show you exactly
how I discovered that lightning
is made out of electricity.”
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
41
“It’s going to be a rainy evening.
It’s perfect weather for our
electrical experiment. Let’s get
started.”
“Is it magic?”
“It’s not magic. I suspect it
comes from nature. My guess
is that lightning is made of
electricity. That’s what I hope
we can prove tonight. Metal
attracts electricity.”I think
it attracts lightning, too.”
“Direct me towards the
darkest cloud, William!”
“Was that spark electricity?”
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
42
“It most certainly was! We’ve done it,
William! We’ve proven that lightning is made
of electricity!”
“Katrina, it’s time to go!”
“Hey Katrina, it’s time to go! I said, it’s
time to go! Have you been sleeping on
this bench all afternoon?”
“Mr. Franklin, you’re still here.
I told my parents about the
lightning rod. That was great!”
“People can accomplish a lot if they
believe in themselves and work hard.
Nothing is so complicated that we can’t
understand it.”
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
43
“Here’s a penny for your thoughts.”
“How did you do that?”
“It’s magic!”
“Thanks, Mr. Franklin. Thanks for
everything.”
“This penny is from 1789.
Where did you get this?”
“An ‘old’ friend gave it to me.”
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
44
Magnetism
and
Electricity
POETRY BOOKLET
NAME:__________________________
Project Glad – MVSD Team 2005
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
45
ELECTRONS by M. d’Arnaud
Electrons here, electrons there,
Electrons, electrons, everywhere!
Minute electrons spinning,
Negative electrons attracting,
Weightless electrons repelling, and
Spherical electrons flowing.
Electrons in the circuits,
Electrons around the magnets,
Electrons near the filaments, and
Electrons from the generator.
Electrons here, electrons there,
Electrons, electrons, everywhere!
Electrons, electrons, electrons!
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
46
I’M AN ELECTRICAL ENGINEER
I’m an electrical engineer, and here to say
I study how charges move everyday.
Sometimes I plan a circuit or read a physics book,
Sometimes I analyze how electromagnets look.
Conductors, voltage, and resistance, too
The Electrical Current Bugaloo!
I study electricity and where it flows,
When switches are flipped, well, there it goes.
It travels through conductors often wrapped in insulators,
Currents can convert to light, and cool refrigerators.
Conductors, voltage, and resistance, too
The Electrical Current Bugaloo!
Parallel and series circuits are part of my design
When creating electrical devices divine,
Generators and batteries produce electricity,
And current can flow as AC or DC.
Conductors, voltage, and resistance, too
The Electrical Current Bugaloo!
by M. d’Arnaud
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
47
I’M A MAGNET by M. d’Arnaud
(Tune of I’m a Nut)
I’m a magnet, and I’m here to say,
I have a magnetic field around me all day.
North and south are my two poles,
When next to other magnets, they’ve got their own roles.
I’m a magnet with magnetic force.
I’m a magnet with magnetic force!
Unlike poles attract while like poles repel,
Attraction or repulsion, it’s easy to tell.
I’m a permanent magnet if I’m strongly magnetic,
If weak, I’m temporary, not quite so energetic.
I’m a magnet with magnetic force.
I’m a magnet with magnetic force!
Electric currents can create strong electromagnets,
And magnetic fields can induce electric currents.
Nickel, cobalt, and iron are ferromagnetic,
Other strong magnets can be natural or synthetic.
I’m a magnet with magnetic force.
I’m a magnet with magnetic force!
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
48
I’M A CIRCUIT by M. d’Arnaud
(My Darling Clementine tune)
I’m a circuit, I’m a circuit, where electric current flows.
I’ve got a light bulb and a battery,
Plus conductive wires, everyone knows.
I have voltage from my battery, and resistance in the bulb,
Moving electrons cause a current,
As they flow, spin, and revolve.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
49
IS THIS A CIRCUIT?
Is this a circuit?
Is this a circuit?
How do you know?
How do you know?
What else does it have?
Any other parts?
Yes, ma’am.
Yes, ma’am.
Electrons are flowing.
It has electrical wires.
Light bulbs and switches,
A battery for voltage.
Is this a simple circuit?
Is this a simple circuit?
How do you know?
What else does it have?
Any other parts?
What is happening?
Yes, ma’am.
Yes, ma’am.
It has only one bulb.
A conductor and voltage.
Sometimes a switch.
Electrons are flowing.
Is this a series circuit?
Is this a series circuit?
How do you know?
How are they connected?
Give me an example.
Yes, ma’am.
Yes, ma’am.
It has two or more bulbs.
In a row.
Holiday lights.
Is this a parallel circuit?
Is this a parallel circuit?
How do you know?
How are they connected?
Give me an example.
Yes, ma’am.
Yes, ma’am.
It has two or more bulbs.
Branching out in different paths.
The lighting in your house.
Well, now are you through?
Did you tell me true?
And what did you chant?
And what did you chant?
Yes, ma’am.
Yes, ma’am.
An electrical circuit.
An electrical circuit.
By Elsa Perini and Marita d’Arnaud
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
50
SCIENTIFIC INVESTIGATION
By M. M. d’Arnaud
I don’t know, but I’ve been told,
An investigation’s worth its weight in gold.
A lab experiment is fun to do,
The scientific method’s the way for you.
Sound off…….Meaningful question,
Sound off…….Investigation,
Sound off…….1,2…Experiment!
Start with a question for which you’d like an answer,
And develop a hypothesis, an educated guess,
Determine the variables that can affect the outcomes,
Then list the materials and procedures for your tests.
Sound off…….Hypothesis,
Sound off…….Procedures and Materials,
Sound off…….1,2…Experiment!
Carefully observe what’s in motion or at rest,
Record and gather data as you measure and test,
Repeat your tests, analyze your observations,
Then develop a conclusion for the investigation.
Sound off…….Analysis,
Sound off…….Conclusions,
Sound off…….1,2…Experiment!
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
51
MATTER by M. M. d’Arnaud
(Tune of Down by the Bay)
The world’s made of matter.
It has mass and takes up space,
And it comes in different phases,
Like solid, liquid, and gas.
Matter’s made up of elements,
Elements’ units are called atoms,
More than a hundred different atoms on the Periodic Table,
The world’s made of matter.
Our universe is made of matter,
Which can melt, boil, freeze, and evaporate.
Mixing matter can form new substances,
With different properties than the originals.
Early people thought all matter
Was made of earth, wind, fire, and water,
Over a hundred different atoms,
microscopic and in motion,
Make up our universe.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
52
MATTER
(Tune of The Brady Bunch – Verse 2 & Chorus)
By Kendra Maxwell and Margaret John
Here’s a story
About the states of matter,
It is everywhere in this whole wide world.
It is people. It is water.
It is plants. It is rocks, and it is air.
The states of matter,
The states of matter,
It is solid. It is liquid. It is gas.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
53
I Know a Physicist
I know an accomplished physicist,
An observant accomplished physicist,
An observant accomplished physicist,
Who studies the laws of the universe.
He develops and conducts experiments,
Monitors momentum and motion,
Calculates forces and distances,
And determines the causes of change.
She designs electric circuits,
Investigates magnetic fields,
Utilizes inductors and capacitors,
And reads research by other scientists.
I know an accomplished physicist,
Who examines the conversion of energy,
Solves problems about mass and charge,
And speculates future events.
By M. d’Arnaud & MVSD Project Glad Team 2005
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
54
Magnetism and Electricity
Home/School Connection #1
Find two objects that you think are magnetic and two that are nonmagnetic.
Sketch and label the objects. Bring them to class tomorrow.
Student’s Name:_______________________________________________________
Parent’s Signature:_____________________________________________________
MVSD El Monte, CA
Project GLAD Team 2005
Magnetismo y Electricidad
Conecsiones del Hogar y la Escuela #1
Busca dos objetos que piensas que son magneticos y dos que no son magneticos.
Dibujalos y nombralos. Traelos a clase manana.
Alumno:_______________________________________________________
Padre:_____________________________________________________
MVSD El Monte, CA
Project GLAD Team 2005
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
55
Magnetism and Electricity
Home/School Connection #2
Ask an adult at home to give two examples of matter that they use at home or at
work. Sketch and label those examples.
Student’s Name:_______________________________________________________
Parent’s Signature:_____________________________________________________
MVSD El Monte, CA
Project GLAD Team 2005
Magnetismo y Electricidad
Conecsiones del Hogar y la Escuela #2
Preguntale a un adulto en casa que te den dos ejemplos de material.
nombralos.
Dibujalos y
Alumno:_______________________________________________________
Padre:_____________________________________________________
MVSD El Monte, CA
Project GLAD Team 2005
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
56
Magnetism and Electricity
Home/School Connection #3
Tell an adult at home about the legend of Magnes. Remember to include who, what,
when, where, and why in your retelling. Sketch and write your favorite part of the
legend of Magnes.
Student’s Name:_______________________________________________________
Parent’s Signature:_____________________________________________________
MVSD El Monte, CA
Project GLAD Team 2005
Magnetismo y Electricidad
Conecsiones del Hogar y la Escuela #3
Cuentale a un adulto acerca de la leyenda de Magnes. Cuando cuentas la leyenda incluye
Dibuja y escribe tu parte favorito de la leyenda de Magnes.
quien, que, cuando, donde, y por que.
Alumno:_______________________________________________________
Padre:_____________________________________________________
MVSD El Monte, CA
Project GLAD Team 2005
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
57
Expert Groups
Static Electricity
Definition
When electrical charges have built up on the surface of an object,
static electricity is created. For example, when a balloon is rubbed against
your hair, electric charges build up on the surfaces of the balloon and your
hair.
Components (parts)
All matter is made up of tiny particles. Some of these particles carry
units of electricity called electric charges. These charges can be positive
(+) or negative (-). Most matter is neutral, which means that the number of
positive charges and negative charges are equal. Only negative (-) charges
can move from one material to another. When charges transfer from one
neutral object to another, the first object is left with a positive (+) charge.
The second one has gained negative (-) charges. Therefore, it has a negative
charge.
Properties
Like charges repel, or push away, one another. Unlike charges attract,
or pull toward, each other. Eventually, electrically charged objects will lose
their “charge”. These charges may simply leak away slowly into the air.
Charges may also “jump” between materials. When electric charges move
off of a charged object, an electric discharge takes place. This is called
static electricity.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
58
Contributing Scientists
In 1752, Benjamin Franklin conducted a famous experiment in which
he attached a metal key to a kite. Franklin flew this kite during a thunder
storm and proved that lightning is indeed static electricity. He showed that
lightning occurs when there is a positive (+) build up at the top of the storm
clouds. The negative charges build up at the bottom of the clouds. These
negative charges repel the negative charges on the ground, making it and any
surrounding objects positively charged. Because opposite charges attract,
the negative charges from the cloud “jump” toward the closest positively
charged object creating a GIANT electrical discharge. This discovery led
to Franklin’s invention of the lightning rod. The rod is attached to the top
of buildings and is connected to the ground by heavy wires. It is through
these wires that the electric charge can safely move toward the ground.
Applications
Today, static electricity is useful in our everyday life. For example,
as a form of pollution control, an electric static precipitator is used to
charge dirt particles in the air and then collect them. People use products
such as hair diffusers to dry curly hair, air purifiers (ionizers), photocopiers
and paint guns, all of which use static electricity.
Adapted from HM Science Discovery Works Gr. 4
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
59
Electric Currents
Definition
Electricity is a form of energy produced by the movement of
electrons. When there is a steady flow of electrons (negative charges)
through a given path, an electric current is created. This path that the
current travels through is called an electric circuit.
Properties
Electric currents travel easily through various forms of matter such
as water and metal. These materials are called conductors. Metals such as
gold, silver and copper are good conductors of electricity. Materials that
are poor conductors are known as insulators. Wood, rubber, plastic, glass
and cork are a few examples. Copper wires that are used to carry electric
currents are coated with rubber. This rubber serves as an insulator. The
insulator helps maintain the strength of the electric current within the wire
and it also protects us from receiving an electric shock.
Components (parts) / Contributing Scientists
Electricity flows through Direct Current (DC) and Alternating Current
(AC). In a direct current, electricity flows continuously in one direction.
Electric cells and batteries for flashlights are examples of DC. Thomas
Edison’s first power plant could only transmit Direct Current (DC) power
over one square mile. It was transmitted through thick dangerous cables.
Edison’s direct current power was not safe for homes, schools or buildings
because it produced too much voltage (amount of electricity) at once.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
60
Nikola Tesla, a Croatian physicist who came to America, found a
solution to Edison’s problem. Tesla discovered that an Alternating Current
(AC) could transmit electricity more efficiently at high voltages over great
distances. In an Alternating Current (AC), the electricity flows one way
around a circuit and then quickly switches back around in the opposite
direction at a rate of fifty times per second. Tesla taught Edison about AC
and explained that the voltage could easily be decreased to safe levels
through transformers for daily use. The electricity in our homes and
schools is AC.
Applications
Computers, video games, TVs and radios all rely on components that
control, change and manipulate electric currents. In fact, we depend on
electric currents to supply energy to just about everything we use in our
daily lives.
Adapted from HM Science Discovery Works Gr. 4
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
61
Electromagnets
Definition
An electromagnet is a powerful temporary magnet that is made when
an electric current passes through a wire coiled around a piece of
ferromagnetic material, often an iron core. In an electromagnet, electricity
is used to create magnetism.
Components (parts)
When an electric current moves through a wire, the wire becomes
surrounded a magnetic field. The magnetic field of the current is comprised
of concentric circles, centered on the wire and lying in the plane
perpendicular to the current. By tightly winding the wire many times around
the magnetic field becomes stronger and more concentrated. If this is done
around a cylinder, a solenoid coil with a magnetic field similar to a bar
magnet is created. When an iron core is placed inside the wire coil, the
magnetic field is strengthened, and the result is an electromagnet.
Interesting Facts/ Contributing Scientists
One can find the direction by using the right hand rule. By pointing
the thumb on your right hand along the direction of the current, the fingers
curl in the direction of the magnetic field. The scientist, Ampere
discovered that the magnetic fields of two parallel currents cause an
attraction between each other.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
62
Properties
An electromagnet is similar to a natural magnet is some ways. First,
they both attract materials that contain iron and certain other metals.
Next, they both have north and south poles. Electromagnets also have
magnetic fields.
Electromagnets and permanent magnets differ in several ways. First,
the strength of an electromagnet can be controlled by changing the amount
of current flowing through the wire coil. Next, an electromagnet can be
turned on and off. Finally, the connections of an electromagnet to a dry cell
(battery) can be switched to make the current reverse directions. A
compass will show that the poles of the magnet have been reversed. This
reversing of poles explains the operation of electric motors.
Contributing Scientists
Until 1819, everyone believed that magnetism and electricity were
completely separate. In 1819, Danish physicist Hans Oersted discovered
that an electric current passing through a wire caused a nearby compass
needle to deflect, or move.
Applications
Electromagnets have many useful applications. Enormous, strong
electromagnets are used in recycling plants to separate cans made of steel
from those made of aluminum. Our homes are filled with items that use
them. Doorbells, telephones, VCRs and cassette players have electromagnets. When a doorbell is pressed, a circuit closes and the electromagnet
pulls on a hammer which strikes a bell. Electric motors rely on
electromagnets as well. These motors run clocks, fans, refrigerators,
vacuum cleaners and hair dryers.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
63
Electric Circuits
Definition and Properties
For electricity to be useful, it must flow through a continuous, open
path. This path along which negative electric charges can flow is called a
circuit.
The flow of electrons in a circuit is similar to the water flow in a pipe.
The circuit gives the electrons a path in which to flow. The amount of
electricity in a circuit depends upon current, voltage and resistance. Current
is the rate of the flow of electrons. Voltage is the force that causes it to
flow. Finally, resistance is the property that slows or stops the flow of
electrons.
Components (parts)
There are three types of electric circuits. The simple circuit is the
easiest to build. It begins with a source of electric charges such as a
battery (dry cell). A light bulb or other device is then connected to the cell
with one copper wire while another copper wire connects the bulb or other
device back to the cell.
Another type of circuit is a series circuit. In the series circuit, the
same materials are used along with additional light bulbs and a power switch
all strung in a row, much like holiday lights.
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
64
The parallel circuit is the third type of electric circuit. The same
materials are used, but they are connected differently. In a parallel circuit,
each bulb or device is directly connected to the battery thus providing each
bulb with its own path for electricity to flow to it. Parallel circuits are used
in our schools and homes. A switch controls the flow of electricity through
the circuit. When the switch is open, the current cannot flow. If the switch
is closed, the current can flow.
Contributing Scientists
Thomas Edison is primarily responsible for the distribution of
electricity to factories, offices and homes. In 1879, while living in New
Jersey, Edison worked on perfecting the electric light. He spent two years
searching for the proper filament to provide adequate resistance. After
over 7,000 attempts, he succeeded at inventing the electric light bulb. In
1882, Edison and his colleagues had cables installed to neighboring cities in
order to distribute electricity to them.
Applications
Electric circuits have enabled us to carry out many of our everyday
tasks. Our cities, homes, businesses and schools are all supplied electricity
through circuits. It is because of these circuits that we are able to light up
dark places, watch TV, play video games and store food in our refrigerators.
We have truly become a world dependant on the inventions and discoveries
of physicists!
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
65
Major
Concepts
Magnets
Magnetic
Force Field
Static
Electricity
Electric
Current
Types of
Electric
Circuits
What is it?
Its Properties
An object
that attracts,
or pulls on
certain
materials
mainly iron
and steel
-north and
south poles
-more objects
-stick things
together
The area
around a
magnet in
which it
exerts its
force
-caused by
spinning
moving
electrons
-concentric
circles
-weak electron
force away
from magnet
-build a
compass lab
A build up
of charge in
one place
-two objects
that are
attracted to
each other to
balance their
electron
-rub head
with a
balloon
demo
Continuous
flow of
electrons
around a
circuit
-AC or DC
-demo
-Conductors & electronics
insulators
-magnetic
field generated
-Thomas
Edison
-Nikola Tesla
Path around
which an
electric
current flow
-simple circuit
-series circuit
-parallel
circuit
-switches
-overhead
projector
-car window
-holiday lights
-wiring in
homes use
parallel
circuits
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
How to
Construct
-attraction
and
repulsion
activity
-make a
series circuit
& a parallel
circuit lab
Inventions &
Inventors
-Maglev train
-magnet
-compass
-screw driver
-can opener
Interesting
Facts
-shepherd
named Magnes
discovered
lodestone in
Ancient
Turkey
-always have a
north and
south pole
-Earth has a
magnetic force
field
-electrostatic
precipitator
charge dirt
particles in air
to be collected
-air purifier
charges air
with static
charge
-lightning bolt
strike tallest
building on
Earth
-Lightning rod
-Ben Franklin
66
Electromagnets
Powerful
temporary
magnet
made by
wrapping a
coil of wire
around a
piece of iron
-electric
current
generates a
magnetic field
-current
determines
strength of
magnet
-can be
switched on or
off
-poles can be
changed
-magnetic
fields of
parallel
currents attract
each other
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
-simple
electromagnet
lab
-doorbell
-earphones
-VCRs
-Electric
motors
-Electric
generators
-Hans Oersted
-Ampere
Electromagnets are
used in
recycling
plants to
separate
aluminum cans
from steel
ones
67
Definition Component
Its
Contributing Applications
Parts
Properties
Scientists
Interesting
Facts
Magnetic Force
Fields
Static
Electricity
Electric
Circuits
Electromagnets
Electromagnetism Level 4
By Mountain View School District - Project G.L.A.D. (Rev. 09/06 JB)
68