Download Plant pathogenic bacteria

Document related concepts

Phospholipid-derived fatty acids wikipedia , lookup

Skin flora wikipedia , lookup

Quorum sensing wikipedia , lookup

Infection wikipedia , lookup

Biofilm wikipedia , lookup

Infection control wikipedia , lookup

Trimeric autotransporter adhesin wikipedia , lookup

Sarcocystis wikipedia , lookup

Hospital-acquired infection wikipedia , lookup

Disinfectant wikipedia , lookup

Horizontal gene transfer wikipedia , lookup

Bacteria wikipedia , lookup

Human microbiota wikipedia , lookup

Triclocarban wikipedia , lookup

Marine microorganism wikipedia , lookup

Bacterial cell structure wikipedia , lookup

Bacterial taxonomy wikipedia , lookup

Bacterial morphological plasticity wikipedia , lookup

Transcript
Plant pathogenic bacteria
General characteristics
Anton von Leuvenhook: first observation of bacteria
1683
TÁMOP-4.1.2.A/2-10/1-2010-0012
2
Koch’s postulates (1876)
• Pathogen is the microorganism, which
- can be isolated from the diseased organism,
- can be grown in a pure culture
- can infect the original host (with the original
symptoms)
- can be re-isolate from the new, infected host
TÁMOP-4.1.2.A/2-10/1-2010-0012
3
Bacteria
•
•
•
•
The smallest living organisms,
Usually one cell, only few micrometer large,
Shape: coccus, bacillus and spirillum
Occurre everywhere, constant and important
constituents of biosphere
TÁMOP-4.1.2.A/2-10/1-2010-0012
4
Big discoveries in bacteriology
• Leuwenhook 1683 First observation of bacteria
• Koch 1876: anthrax bacillus: Bacillus anthracis
• Burrill 1879: Erwinia amylovora – bacteria can cause
disese of plants (fire blight)
• Erwin Smith: First description of many bacteria
• Pammel 1895: Xanthomonas campestris – from
cabbage
• Smith 1896: Pseudomonas solanacearum – from
potato
• Smith 1907: Agrobacterium tumefaciens – from fruit
trees
TÁMOP-4.1.2.A/2-10/1-2010-0012
5
Plant pathogenic bacteria
1950 Zoltán Klement the pioneer of plant bacteriology
in Hungary
Among 1600 bacterium genera only about 300 cause
diseases on plants
TÁMOP-4.1.2.A/2-10/1-2010-0012
6
Main properties of plant pathogenic bacteria
• Heterotrophic organisms
• Facultative parasites (usually can be cultured in pure
cultures on artificial media)
• Usually contains only single cells
• Complex layer of cell wall
• Shape: bacillus, coccus, spirillum
• Majority Gram negative stained
• Aerobe, seldom facultative anaerobe living style
• No real nucleus, only chromatin, containing DNA
• DNA containing small, round plasmids in the cytoplasm
TÁMOP-4.1.2.A/2-10/1-2010-0012
7
Living forms of bacteria
• Autotrophs (from the energy supply
independent species, using the carbon dioxide
as carbon source), chemotrophs,
photoautotrops
• Heterotrophs (using organic carbon source)
TÁMOP-4.1.2.A/2-10/1-2010-0012
Main components of the bacterial cell
• Cell membrane (lipid)
• Cell wall (double structures of phospholipids
and carbohydrates)
• No independent membrane bound organelles
(cell nucleus, plastids, endoplasmic reticulum)
TÁMOP-4.1.2.A/2-10/1-2010-0012
Construction of bacterial cell
• Complex cell wall, about 10-20 nm thick,
mucoproteid skeleton, external membranes
• (Gram + and -) groups
• Plant pathogenic bacteria are usually Gram -, (G+
mucoproteid skeleton is loose, or G- is compact)
- Inner cytoplasm membrane,
- Periplasmic space (peptidoglucane),
- Outer membrane (lipids, proteins, LPSlipopolysaccharids)
- Cytoplasm: ribosomes, proteins, nucleic acids,
plasmids
- EPS envelope (extra-cellular polysaccharide)
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Bacterial taxons
• Gram positive (no outer membrane)
e.g. Actinobacteria
• Gram negative (with outer membrane)
e.g. Proteobacteria
• Unknown, non classified bacteria
e.g. Cyanobacteria
TÁMOP-4.1.2.A/2-10/1-2010-0012
Extracellular structures
• Bacterial cell wall (peptidoglucan)
- Gram + type, thick, contains peptidoglucane and
lipoteicnoinic acid
- Gram – type thin, contains only lipopolysaccharides
• Outher capsula (envelope) contains alginate and EPS
(extra cellular polysaccharides)
TÁMOP-4.1.2.A/2-10/1-2010-0012
Genetic material
• No real, independent nucleus (prokaryotic
organisms)
• Irregular, round shaped DNAs in the nucleotide zone,
only one giant chromosome
• The genome contains about 300 genes with about
4Mbp
TÁMOP-4.1.2.A/2-10/1-2010-0012
Cytoplasmic genetic elements
• Chromatin (chromosome)
• Plasmids: independent round shaped DNA
molecules, coding few proeteins, responsibles for
few properties (eg. antibiotic resistance)
• Ribosomes and RNAs, producing proteins
TÁMOP-4.1.2.A/2-10/1-2010-0012
Transposons
• Special bacterial genetic elements, which can be
translocated randomly from one part of the genome
to other place
TÁMOP-4.1.2.A/2-10/1-2010-0012
Movement organelles of bacterial cells
• Flagellum (plural - flagella) 10-20 nm thick, 20-70 mm
long, originated from thy cytoplasm
• Types of flagella:
- atrich (without flagellum);
- monotrich (one): Xanthomonas;
- lophotrich (lot in one side): Pseudomonas;
- amphitrich (on two poles);
- peritrich (around the whole surface) : Erwinia
TÁMOP-4.1.2.A/2-10/1-2010-0012
16
Bacterial colonies
• Development of colonies is characteristic for the
bacteria
• Emerging, round shape, slightly wave like…forms
• Some are producing color substances (stains)
(Corynebacterium michiganense yellow, C. insidiosum
blue)
TÁMOP-4.1.2.A/2-10/1-2010-0012
17
Reproduction types
•
•
•
•
Rest (leg) phase, (time of DNS replication)
Log phase (time of reproduction), 3-4 hrs
Stationer phase, 24-78 hrs
Asexual (division by bipartition) and sexual
(conjugatio) by the pilus, with DNA
• Decline phase
• Plant pathogenic bacteria reproduce slower than
animal ones
TÁMOP-4.1.2.A/2-10/1-2010-0012
18
Environmental factors influencing the multiplication
• Temperature: 2-5 oC minimum, 25-30 oC optimum,
over 50 oC will die
• Nutrients: water, carbohydrates, alkali pH.
Autotrophic and heterotrophic type of living. Aerobe
and anaerobe types
• Light: Not as sensitives as the animal pathogens. UV
light is harmful for DNA
TÁMOP-4.1.2.A/2-10/1-2010-0012
19
Characterisation protocol of an unknown bacterium 1.
• Isolation from diseased tissue on nutrient agar
• Separation of colonies
• Pathogenicity experiments on tobacco plants (HR)
TÁMOP-4.1.2.A/2-10/1-2010-0012
Characterisation protocol of an unknown bacterium 2.
•
•
•
•
•
Testing of bacteria producing HR on tobacco plants
Physiological and biochemical tests
Pathogenicity tests
Ice nucleation tests
Production of antibiotics
TÁMOP-4.1.2.A/2-10/1-2010-0012
Characterisation protocol of an unknown bacterium 3.
Pathogenicity test
• On young fruits
• On young sprouts
• On intact plants
• On cuttings
TÁMOP-4.1.2.A/2-10/1-2010-0012
Identification methods
• Gram staining: (1884) pararosaniline (Gentiana
violet+ KOH). Generally G-, but Clavibacterium G+
• Morphological properties: shape, form, flagella
• In vitro studies: form, colour of colonies
• Biochemical reactions: nitrate reduction,
carbohydrate utilization, gelatine hydrolysis, gas
production etc.
• Pathogenicity according to Koch’s postulates
TÁMOP-4.1.2.A/2-10/1-2010-0012
23
Gram (+) staining of bacterial cells
Foto: T.Vigh
TÁMOP-4.1.2.A/2-10/1-2010-0012
24
Diagnostic methods
•
•
•
•
•
Symptoms (macroscopic or microscopic)
Isolation on artificial media, growing in pure cultures
Colonies, type of colonies
Microscopic studies (form, shape, flagella)
Chemical diagnosis: production of different
metabolites
• Phage analysis
• Molecular diagnosis: proteins and nucleic acids
TÁMOP-4.1.2.A/2-10/1-2010-0012
25
Serological diagnosis of bacteria
• Serological methods:
- antigen – antibody relation,
- serological reactions: agglutination (cell level),
precipitation (in colloid form), immuno-electron
microscopy, immuno blotts etc.
Enyme Linked Serological Assay - ELISA
• Antigens: lipoproteins, flagellin
• Agglutination titre for estimation of taxonomic
relation. Polyclonal and monoclonal antisera
TÁMOP-4.1.2.A/2-10/1-2010-0012
26
Immunodiffusion test with serologically related strains
Antiserum
Antigen samples
TÁMOP-4.1.2.A/2-10/1-2010-0012
27
Molecular diagnosis of bacteria
• Extraction of proteins or total nucleic acids
• Separation of proteins or nucleic acids by
electrophoresis
• Sequence analysis of nucleic acids by restriction
endonucleases (produced by fungi)
• PCR – polymerase chain reaction for amplification of
nucleic acids
• Hybridization (Western, Southern, Northern blot)
TÁMOP-4.1.2.A/2-10/1-2010-0012
28
Phage analysis
• 1915 Twort and D’Herelle – discovery of
bacteriophages by specific lyses of bacterial colonies
• Bacteriophages are viruses infecting bacteria
(Delbrück and Luria): No independent metabolism,
nucleoproteins, specific for bacterial genera
• Adsorption, vegetative phase, lyses
TÁMOP-4.1.2.A/2-10/1-2010-0012
29
Characteristics of phage infection
• Adsorption, penetration of phage nucleic acid into the cell.
Only one phage infects!
• Vegetative phase: New protein synthesis, respiration does
not change, division (reproduction) stops
• Biosynthesis of new virions, disruption of cell walls
(production about 10-300 new phages in a single bacterial
cell)
• Plaque formation (8-12 hrs). Plaque counting. Specific!
TÁMOP-4.1.2.A/2-10/1-2010-0012
30
Transmission of bacteria
• Mechanical way (through by wounds), through by the
stomata and lenticels, etc.
• By seed transmission, from the surface and from the
endospermium
• Pollen transmission: Erwinia amylovora
• Vegetative mode: tubers, bulbs, grafting etc.
• Vectors: insects, nematodes, humans etc.
• Water (the most common)
TÁMOP-4.1.2.A/2-10/1-2010-0012
31
Pathogenicity of plant pathogenic bacteria
• Evolution of bacteria: saprophytic, symbiontic,
parasitic (P. fluorescens - P. tabaci, AgrobacteriumRhizobacterium relationship)
• Pathogenicity: toxin production, pectinases,
hormones causing hypertrophy or other growth
abnormalities
TÁMOP-4.1.2.A/2-10/1-2010-0012
32
Infection conditions of phytopathogenic bacteria
• Infection conditions: pathogen, susceptible plants,
favourable environmental conditions
• Infection by wounds and natural openings!
• Starts fom the soil, through plant debrids, seeds,
wounds of phloem and xyleme vessels
• Vectors: insects, bees, etc.
• Physiological and developmental stage of plants
TÁMOP-4.1.2.A/2-10/1-2010-0012
33
Living types of bacteria
Autotrophs (autonomous energy supply,
species, using carbon dioxide of the air as
carbon source), chemotrophs,
photoautotrophs, etc.
Heterotrophs (using organic carbon sources)
TÁMOP-4.1.2.A/2-10/1-2010-0012
34
Bacterium domens
• Archaea – thermophil fossil organisms from
about 2,5 – 3 milliard years ago, altered type
of evolution. Characterization on the basis of
16S ribosomal RNA
• Bacteria - recent taxon, developed approx. 4
milliard years ago
TÁMOP-4.1.2.A/2-10/1-2010-0012
35
Phases of bacterial infection
•
•
•
•
•
•
Penetration into the intercellular space
Avoid of defence reactions
Alteration of host metabolism
Genetic transfer by plasmids (Agrobacterium)
Colonization of nutrient reach tissues
Secondary colonization (soft rots)
TÁMOP-4.1.2.A/2-10/1-2010-0012
36
Defence reactions against bacterial infection
• General, non-specific defence reaction
• Specific defence reaction (Hypersensitive reaction,
HR) Resistant plant, incompatible - host parasite
relation
• Lack of defence reaction (susceptible plant)
compatible host – parasite relation)
TÁMOP-4.1.2.A/2-10/1-2010-0012
37
Disease induction (in susceptible host)
• Susceptible plant (compatibility)
• Avoid the recognition by EPS
• Inhibition of HR (products of Avr genes do not react
with the R genes)
• Water and nutrient supply in the intercellular space
• Alteration of pH (efflux of K ions and influx of H ions)
• Moderate production of oxygen free radicals
• Efflux of glucose into the intercellular spaces
TÁMOP-4.1.2.A/2-10/1-2010-0012
38
Necrobiosis in the susceptible host
• Rapid bacterial multiplication in the intercellular
space (water soaking spots)
• Glucose exhaustion, new bacteria will produced
without EPS
• Recognition of bacteria by the host
• Bacterial reproduction stops,
• Bacteria will be killed by the necrosis
• Typical bacterial symptoms will develop (necroses,
wilting, yellowing etc.)
TÁMOP-4.1.2.A/2-10/1-2010-0012
39
Specific defece reaction (HR)
• Induction phase: attachment of bacteria on the cell
surface
• Activation of hrp (genes of hypersensitivity and
pathogenicity) in the bacterial cell
• Latency phase: introduction of Avr or Vir gene
products into the host cell
• Activation of R (resistant) genes of the plant
• Increase and accumulation of reactive oxygen radicals
• Activation of antioxidants and antioxidant enzymes
• Necrotic phase: Active destruction of pathogen
• Programmed cell death (HR)
TÁMOP-4.1.2.A/2-10/1-2010-0012
40
Genes of hypersensitivity and pathogenicity (hrp)
• Characterization by transposon mutagenesis
• Because the spoiled genes of the mutants do not
induce HR, their reproduction rate decrease
• Organized in gene clusters 25-30 kb. (in the „island of
pathogenicity”)
• Localized in the chromosomes or in plasmids
(Ralstonia)
• Incorporation into pathogens will induce HR
• Proteins of the III. rd type of secretion mechanism
TÁMOP-4.1.2.A/2-10/1-2010-0012
41
Hypersensitivity
• Hypersensitivity is the hyperergic expression of
incompatibility
• During the HR by the rapid death of the host cell the
bacteria will also be killed
• In the majority of cases the HR leads to resistance
(but itself it is not the resistance, only the
consequence of the resistance)
TÁMOP-4.1.2.A/2-10/1-2010-0012
42
Main types symptoms caused by bacterial infection
• Leaf spots, local necroses (Pseudomonas,
Xanhomonas)
• Cankers , wounds (Pseudomonas syringae, Erwinia
amlylovora)
• Wiltings (irreversible and reversible) (Ralstonia
solanacearum)
• Tuber soft rot (Erwinia carotovora)
• Tumors (Agrobacterium tumefaciens)
• Scab (Streptomyces scabies)
TÁMOP-4.1.2.A/2-10/1-2010-0012
43
Necroses, leaf spots
• Local spots, water soaked spots, later necroses
• Necrotic spots on the leaves, stems, flowers and
fruits
• Bacterial slime
• Chlorosis (effect of toxins), wilting
• Largr necroses, cankers
• Usually caused by Pseudomonads and
Xanthomonads
TÁMOP-4.1.2.A/2-10/1-2010-0012
44
Water soaking and necrosis (Pseudomonas syringae pv. phaseolicola)
Photo: S. Kadlicskó
TÁMOP-4.1.2.A/2-10/1-2010-0012
45
Necroses - Cankers
• Cankers of woody plants: Pseudomonas morsprunorum
• Apoplexy: Necrogenic bacteria, ice nucleation,
exhaustion of glucose in the vascular system, frost
injury, necrosis in cambium. Caused by:
Pseudomonas syringae pv. syringae
• Fire blight of apple trees: Bacterial mass blocks the
nutrient transport, causing wilting and necrosis on
twigs and trunks. Caused by: Erwinia amylovora.
TÁMOP-4.1.2.A/2-10/1-2010-0012
46
Necrosis of fire blight (Erwinia amylovora)
TÁMOP-4.1.2.A/2-10/1-2010-0012
47
Wilting
•
•
•
•
Blocking of vascular system (ring necrosis)
Wilting (sometimes temporary)
Ralstonia solanacearum wilt
Curtobacterium flaccumfaciens, P. syringae pv.
phaseolicola, Xanthomonas campestris pv. phaseoli
TÁMOP-4.1.2.A/2-10/1-2010-0012
48
Wilt caused by vascular block
Ralstonia
solanaceraum
blocks the
vascular system
and causes
temporary wilting
of potato plants
and ring necrosis
on tubers
TÁMOP-4.1.2.A/2-10/1-2010-0012
49
Soft rots caused by bacteria
• Tubers of potato, bulbs of onion, cabbage head
• Pectolitic enzymes (pectinases, pectin
metylesterases) lisate the tuber tissues
• Pathogenicity depends on the enzyme activities
• Erwinia carotovora group
TÁMOP-4.1.2.A/2-10/1-2010-0012
50
Soft rot of carrots caused by Erwinia carotovora
Fotos: T. Vigh
TÁMOP-4.1.2.A/2-10/1-2010-0012
51
Potato soft rot (Erwinia carotovora)
TÁMOP-4.1.2.A/2-10/1-2010-0012
52
Bacterial tumors
• Cell and tissue proliferation in Dicots by the transfer
of bacterial plasmid DNA
• Crown gall caused by Agrobacterium tumefaciens, A.
vitis
• Pseudomonas savastanoi on oil trees
TÁMOP-4.1.2.A/2-10/1-2010-0012
53
Tumors on olive trees (Pseudomonas savastanoi)
TÁMOP-4.1.2.A/2-10/1-2010-0012
54
Crown gall caused by Agrobacterium vitis
TÁMOP-4.1.2.A/2-10/1-2010-0012
55
Actinomyces are bacteria, not fungi!
• 1875 first report on potato scab
• 1891 Streptomyces scabies
• Formerly independent taxon, recently belongs to
bacteria (Actinomycetales, Streptomyces)
• No real nucleus, cell wall does not contain chitin
TÁMOP-4.1.2.A/2-10/1-2010-0012
56
Plant pathogenic bacteria
Economically important
bacterial diseases
Taxonomy of most important bacteria
Class
Family
Genus
Alpha Proteobacteria Rhizobiaceae
Agrobacterium
Beta Proteobacteria
Ralstoniaceae
Ralstonia
Gamma Proteobacteria Pseudomonadaceae
Pseudomonas
Xanthomonadaceae
Xanthomonas
Enterobacteriaceae Erwinia
Actinobacteria
Microbacteriaceae
Corineabacteriaceae
Streptomycetaceae
TÁMOP-4.1.2.A/2-10/1-2010-0012
Clavibacter
Curtobacterium
Rhodococcus
Streptomyces
Taxonomy of Pseudomonas genus
•
•
•
•
•
•
Bacteria (Gram -)
Phylum: Proteobacteria
Class: Gamma Proteobacteria
Order: Pseudomonadales
Family: Pseudomonadaceae
Genus: Pseudomonas
• Inside the Pseudomonas genus there are animal-,
human- and plant pathogenic species
TÁMOP-4.1.2.A/2-10/1-2010-0012
59
Plant pathogenic Pseudomonas species
• Pseudomonas species:
• Pseudomonas syringae: species with wide range of
hosts, over 50 different pathovars
• Pseudomonas savastanoi – infects oil trees
• Pseudomonas viridiflava – infects sweet pepper
TÁMOP-4.1.2.A/2-10/1-2010-0012
60
Pseudomonas syringae
• Rod shaped, Gram-negative bacterias with polar
flagella
• Infect a range of plant species
• Presence of INA (ice nucleation active) proteins
• Infection: wet, cool temperature (optimal 12-25 Co),
could be seed-borne, can live as saprophyte
• Pathovars:
- P. s. pv. atrofaciens – infects Triticum aestivum
- P. s. pv. pisi – infects Pisum sativum
- P. s. pv. syringae – infect Syringa, Prunus, Phaseolus
species
TÁMOP-4.1.2.A/2-10/1-2010-0012
61
Bacterial necroses on tobacco leaf
Serious disease of
tobacco plants
caused by Pseudomonas
syringae
pv. tabaci
TÁMOP-4.1.2.A/2-10/1-2010-0012
62
Pseudomonas syringae pv. syringae
TÁMOP-4.1.2.A/2-10/1-2010-0012
63
Apoplexy of apricot trees
•
•
•
•
Rapid wilting and necrosis of apricot branches
Necrosis in vascular system
Causal agent: Pseudomonas syringae pv. syringae
Bacteria multiply in vascular tissues, utilizing its sugar
content
• Ice nucleating strains cause frost damage and stem
necrosis
• Control: removal of infected parts (truncation)
• Pruning not in winter, but in spring
TÁMOP-4.1.2.A/2-10/1-2010-0012
64
Truncated apricot tree after bacterial infection
TÁMOP-4.1.2.A/2-10/1-2010-0012
65
Died apricot tree : Apoplexy
TÁMOP-4.1.2.A/2-10/1-2010-0012
66
Pseudomonas syringae pv. phaseoli
TÁMOP-4.1.2.A/2-10/1-2010-0012
67
Pseudomonas viridiflava
• Fluorescent soil borne
pathogen infects
tomato (stem
necrosis, dark
blotches on pruning
sites of the stem),
soft rot on sweet
pepper, the runner
beans etc.
TÁMOP-4.1.2.A/2-10/1-2010-0012
68
Pseudomonas viridiflava infection on sweet pepper
Photo:Z. Klement
TÁMOP-4.1.2.A/2-10/1-2010-0012
69
Pseudomonas savastanoi
TÁMOP-4.1.2.A/2-10/1-2010-0012
70
Taxonomy of Xanthomonas genus
• Gram negative bacteria, with rod shaped flagella
bacteria grow almost exclusively in plants
• Phylum: Proteobacteria
• Class: Gamma Proteobacteria
• Order: Xanthomonadales
• Family: Xanthomonadaceae
• Genus: Xanthomonas
TÁMOP-4.1.2.A/2-10/1-2010-0012
71
Xanthomonas campestris
•
•
•
•
•
•
•
•
Cause a large variety of plant diseases
Pathovars classification based on the host plant
Important pathovars:
- pv. campestris.
- pv. caroteae
- pv. juglandis
- pv. malvacearum
- pv. pelargonii
TÁMOP-4.1.2.A/2-10/1-2010-0012
72
Xanthomonas campestris pv. vesicatoria
• Aerobic. Gram negative, mobile (single polar
flagellum)
• Principal hosts: tomatoes, sweet pepper and other
Solanaceous plants
• Occurs widely in pepper and tomato growing areas,
infects under warmer, humid conditions (above 30 oC)
• Survives in seeds, infested debris, stalks
• In glasshouses seed borne infection
(survive on tomato and pepper seeds for 10 years)
• Disseminated by rain splash, irrigation, handling,
aerosols
TÁMOP-4.1.2.A/2-10/1-2010-0012
73
Symptoms on pepper caused by X. vesicatoria pv. vesicatoria
• Corky spots and
scabs, water soaking
margins , black
necrotic lesions on
the leaves with
yellow haloes
TÁMOP-4.1.2.A/2-10/1-2010-0012
74
Xanthomonas campestris ssp. vesicatoria
Control:
healthy seed,
care in
handling,
phytosanitary
measures,
resistant
variety
TÁMOP-4.1.2.A/2-10/1-2010-0012
75
Xanthomonas campestris pv. juglandis
TÁMOP-4.1.2.A/2-10/1-2010-0012
76
Ralstonia solanacearum
• Quarantine, aerobic, Gram-negative, soil-borne
bacteria with polar flagella
• One of the most important bacterial pathogen,
infects over 250 species of 50 families
• Phylum: Proteobacteria
• Class: Beta Proteobacteria
• Order: Burkholderiales
• Family: Ralstoniaceae
• Genus: Ralstonia
TÁMOP-4.1.2.A/2-10/1-2010-0012
77
Ralstonia solanacearum
• Host range: potato, tomato, pepper, tobacco,
eggplant, banana, etc.
• Symptoms: reversible, later irreversible wilting of the
leaves. Bacterial exudates accumulate in the vascular
system. Ring necrosis in potato tubers
• Overwinters in diseased plants, plant debris, in seed
and tubers. Occurs in surface waters, including rivers.
Can be spread by irrigation , mechanical tools and by
seeds
• Infects by wounds. Wilting occurs at high
concentration of bacteria in the xylem (EPS)
TÁMOP-4.1.2.A/2-10/1-2010-0012
78
Erwinia amylovora
• Contagious, quarantine, Gram-negative bacteria, causal
agent of „fireblight disease” of apple trees, affecting
apples, pears, quinces and other members of family
Rosaceae (Cotoneaster, Pyracanthus etc.), Class: Gamma
Protobacteria
• Order: Enterobacteriales
• Family: Enterobacteriaceae
• Infects in warm, wet conditions in spring in blossom time.
Affected areas are dying quickly and tender new shoots
and leaves. Bacterial exudates
• Dissemination by rain, honeybees, birds and insects
TÁMOP-4.1.2.A/2-10/1-2010-0012
79
„Shepherds crook” symptom of fire blight
Photo: Cs. Pintér
TÁMOP-4.1.2.A/2-10/1-2010-0012
80
Symtoms of late infection caused by Erwinia amylovora
TÁMOP-4.1.2.A/2-10/1-2010-0012
81
Secondary infection of fire blight on pear
TÁMOP-4.1.2.A/2-10/1-2010-0012
82
Control of fire blight disease
•
•
•
•
•
Resistant (?) variety
Rather difficult. Routine inspection in the orchard
Removal and burning of infected branches
Antibiotics are not allowed!
Chemical control by copper containing fungicides
with special care of honeybees
• Quarantine measures
TÁMOP-4.1.2.A/2-10/1-2010-0012
83
Erwinia infection on apple shoots
TÁMOP-4.1.2.A/2-10/1-2010-0012
Apple shoot necrosis
TÁMOP-4.1.2.A/2-10/1-2010-0012
Canker of apple trees caused by Erwinia amylovora
TÁMOP-4.1.2.A/2-10/1-2010-0012
86
Erwinia carotovora
• Rod shaped Gram negative, peritrichously flagellated
facultative anaerobe bacterium
• Class: Beta Proteobacteria,
• Order: Enterobacteriales,
• Class: Enterobacteriaceae
• Causes diseases of many plants
• Infects a wide host range, causing soft rot on carrots,
potato, tomato, cucurbits, onion, etc.
• Important as post-harvest pathogen
• Produce proteolitic enzymes (pectinases, cellulases)
TÁMOP-4.1.2.A/2-10/1-2010-0012
87
Erwinia carotovora on cabbagge
TÁMOP-4.1.2.A/2-10/1-2010-0012
88
Erwinia carotovora infection
TÁMOP-4.1.2.A/2-10/1-2010-0012
89
Erwinia carotovora on carrot
Photos: T. Vigh
TÁMOP-4.1.2.A/2-10/1-2010-0012
90
Soft rot of paotato caused by Erwinia carotovora
TÁMOP-4.1.2.A/2-10/1-2010-0012
91
Potato soft rot
TÁMOP-4.1.2.A/2-10/1-2010-0012
92
Test for pectolitic enzymes on potato slices
Photo: M. Kállay
TÁMOP-4.1.2.A/2-10/1-2010-0012
93
Agrobacterium tumefaciens
• Rod shaped, Gram negative soil bacterium with
flagella
• Causal agent of crown gall disease
• Ti plasmid is responsible for tumor formation
• Class: Alpha Proteobacteria
• Order: Rhizobiales
• Family: Rhizobiaceae
• Genus: Agrobacterium
TÁMOP-4.1.2.A/2-10/1-2010-0012
94
Infection by Agrobacterium tumefaciens
• Bacteria chemotactically move to the root cells
• Vir A and transmembrane proteins recognize the cell
exudates
• Bacteria synthesize cellular fibrils, anchoring bacteria
to the host cell
• Cut out of transfer DNA (T-DNA) from the circular (Titumor inducing) plasmid
• One copy of T-DNA (activated by vir genes)
transferred into the plant cells by T pilus
• Incorporation of T-DNA into the plant chromosome
TÁMOP-4.1.2.A/2-10/1-2010-0012
95
Genes in the Ti plasmid transfer (T) DNA
•
•
•
•
Vir genes cut out T-DNA region from Ti plasmid
Gene of indole acetic acid (IAA) production
Gene of cytokinin production
Gene for encoding opines (octopine and nopaline
• Only one copy of T-DNA is exported to the host cell!
TÁMOP-4.1.2.A/2-10/1-2010-0012
96
Agrobacterium as gene vector
• Cloning and amplification of a desired gene (DNA)
sequences (e.g. in Escherichia coli)
• Incorporation of the cloned DNA into Agrobacterium
tumefaciens Ti plasmid (transformed bacteria)
• Agroinfection of isolated plant cells or protoplast by
transformed A. tumefaciens
• Transformation of host cells by modified Ti plasmid
containing the desired gene
• In vivo culture of transformed cells to plants in tissue
cultures
TÁMOP-4.1.2.A/2-10/1-2010-0012
97
Tumor formation on fruit tree
Infection of
Agrobacterium
means a natural
genetic
transformation,
a genetically
modified plant!
TÁMOP-4.1.2.A/2-10/1-2010-0012
98
Crown gall caused by Agrobacterium
TÁMOP-4.1.2.A/2-10/1-2010-0012
Tumor formation of Agrobacterium vitis
• A.
vitis DNA has small
differences in its DNA from
A. tumefaciens
•A. vitis causes systemic
infection on grapes!
•Properties: similar to
Agrobacterium tumefaciens
•Control: Eradication,
sanitary measures
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Agrobacterium rhizogenes
•
•
•
•
Symptoms: root proliferation
Host plants: fruit trees
Agent: Agrobacterium rhizogenes
Contains Ri plasmid responsible for the infection and
symptoms
• Control: see A. tumefaciens
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Control of bacterial diseases
• Use of resistant (or tolerant) varieties
• Quarantine measures: Erwinia amylovora, Ralstonia
solanacearum
• Agro technical methods: prevention, hygiene,
prevention of transmission, soil disinfection
• Chemical methods: antibacterial chemicals (no
antibiotics are allowed !)
• Biological methods: antagonistic bacteria, e.g.
Agrobacterium K84 strain produces bacteriocin
against Ti plasmid containing Agrobacterium strains
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Agrotechnical and chemical control
• Keep the quarantine rules
• Agro technical methods:
• Proper nutrient supply, isolated propagation,
preventive measures to avoid of infection, soil
disinfection, forecasting
• Hygienic rules
• Chemical control: bactericides, no antibiotics
allowed!
TÁMOP-4.1.2.A/2-10/1-2010-0012
Use of resistant varieties to bacterial infection
Resistant and
susceptible cabbage
lines in the
experimental field
Photo: Z. Klement
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Taxonomic position of Actinomycetes
• Group of soil-and water-borne, Gram positive
organisms, probably the oldest living organism on
Earth
• Domain: Bacteria
• Phylum: Actinobacteria
• Class: Actinobacteridaceae
• Order: Actinomycetales
• Specific group of bacteria, morphologically
resembling to the fungi, because of elongated cells or
filaments or hyphae.
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Streptomyces scabies
• Unusual filamentous pathogen, similar to fungi
• Causative agent of common scab of potato and other
root crops
• Present in soils of potato growing areas
• Symptoms: russet and pitted lesions, later necrotic
areas on the surface, corky tissues
• Gray, spiral vegetative hyphae are fragmented into
spores
• Spores survive in the soil, spread through water
infect by wounds
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Phytoplasma
• A distinct group of plant pathogenic organisms,
belonging to the bacteria
• There are living in the intercellular space and in the
phloem tissues of the plants
• Its genome contains both DNA and RNA
• Have no differentiated cell wall, only cell membrane
• Therefore, their shape is generally round, but variable
(pleomorph), about 100 nm in diameter
• Spread by leafhoppers in a persistent manner
• Diseases can be cured by antibiotics
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Most important properties of phytoplasma
• 1967 Yoi Doi et al. separation from viruses according
to the type of genome (RNA and DNA)
• Propagation in artificial media is not successful
• Two living cycles: in planta and in the vector
• Symptoms: dwarfing, yellowing, deformation of
flowers, witches broom, hormonal abnormalities
• Taxonomy: formerly according to the symptoms,
recently: Candidatus, on the basis of 16r (ribosomal)
DNA
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Special characteristics of phytoplasma
• Now total DNA sequences of two species (AYWB and OY)
are known (530-1350 kb), with about 671-754 genes
• Have plasmids (similarly to bacteria)
• There are missing some genes characteristic to bacteria
(for de novo amino acid, fatty acid, nucleotide- and ATP
synthesis)
• There are depended on the metabolism of their host
(plant or leafhopper)
• Membrane transport is affected (no tubulin has found
necessary for cell division)
• The most primitive forms of auto replication
• Because of repetitive DNA sequences, horizontal gene
transfer is possible (recombination among the
chromosomes and the plasmids)
TÁMOP-4.1.2.A/2-10/1-2010-0012
10
Aster yellows phytoplasma
• Chronic, phloem limited bacterial-like organisms
affects approx. 300 species in 38 families (onion,
letuce, celery, carrot etc.)
• Symptoms: virescence, chlorosis, stunting, sterility of
flowers
• Vectored by leafhopper Macrosteles quadrilineatus
• Control: infected plants should be removed and
eliminated. Control of insect vectors and weeds. No
cure possibilities
TÁMOP-4.1.2.A/2-10/1-2010-0012
11
Aster yellows phytoplasma on cabbage
TÁMOP-4.1.2.A/2-10/1-2010-0012
11
Stolbur phytoplasma
• The most common phytoplasma agent in Hungary
• Spreads by leafhoppers
• Infects tomato (flower deformation)
- green pepper (wilting)
- potato (air bulbs)
- tobacco (flower abnormalities)
- grapes (yellowing, redding, gummy shoots)
- and a lot of other plants
TÁMOP-4.1.2.A/2-10/1-2010-0012
Flower abnormalities caused by stolbur phytoplasma
TÁMOP-4.1.2.A/2-10/1-2010-0012
11
Yellowing and formation of new branches of tomato
TÁMOP-4.1.2.A/2-10/1-2010-0012
11
Stolbur phytoplasma on tobacco
TÁMOP-4.1.2.A/2-10/1-2010-0012
11
Wilt of pepper plants caused by Stolbur phytoplasma
TÁMOP-4.1.2.A/2-10/1-2010-0012
11
Aerial bulbs on Stolbur phytoplasma infected potato
TÁMOP-4.1.2.A/2-10/1-2010-0012
11
Convolvulus sp. infected by stolbur phytoplasma
TÁMOP-4.1.2.A/2-10/1-2010-0012
Stolbur infection on almond and Polygonathum
TÁMOP-4.1.2.A/2-10/1-2010-0012
Stolbur infection on white grape
TÁMOP-4.1.2.A/2-10/1-2010-0012
Matured and non matured grape shoots
TÁMOP-4.1.2.A/2-10/1-2010-0012
European stone fruit phytoplasma
•
•
•
•
Infects fruit trees (apricot, peach, plum, etc.)
Transmitted by leafhoppers in persistent manner
Control of vector species
Characterization according to 16S rDNA
TÁMOP-4.1.2.A/2-10/1-2010-0012
Symptoms caused by European stone fruit phytoplasma
TÁMOP-4.1.2.A/2-10/1-2010-0012
Symptoms caused by European stone fruit phytoplasma
TÁMOP-4.1.2.A/2-10/1-2010-0012
Clover green pethal phytoplasma
•
•
•
•
Phyllody and greening of flowers
Disseminated by leafhoppers
No economic importance
Differentiation on the basis of 16S rDNA
TÁMOP-4.1.2.A/2-10/1-2010-0012
Clower green petal phytoplasma
Healthy
Diseased
TÁMOP-4.1.2.A/2-10/1-2010-0012
12
Növénypatogén baktériumok
Dr. Richard Gáborjányi
Georgikon Kar
Növényvédelmi Intézet
AZ ELŐADÁS LETÖLTHETŐ:
-