Download Quantum Mechanics and Split Peas

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Quantum entanglement wikipedia , lookup

Path integral formulation wikipedia , lookup

Quantum fiction wikipedia , lookup

Probability amplitude wikipedia , lookup

Quantum computing wikipedia , lookup

Bell's theorem wikipedia , lookup

Many-worlds interpretation wikipedia , lookup

Orchestrated objective reduction wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Quantum teleportation wikipedia , lookup

Quantum group wikipedia , lookup

Quantum machine learning wikipedia , lookup

Electron configuration wikipedia , lookup

Atomic orbital wikipedia , lookup

Quantum key distribution wikipedia , lookup

History of quantum field theory wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

Copenhagen interpretation wikipedia , lookup

Max Born wikipedia , lookup

Bohr–Einstein debates wikipedia , lookup

Canonical quantization wikipedia , lookup

Hydrogen atom wikipedia , lookup

Quantum state wikipedia , lookup

Bohr model wikipedia , lookup

T-symmetry wikipedia , lookup

Interpretations of quantum mechanics wikipedia , lookup

EPR paradox wikipedia , lookup

Hidden variable theory wikipedia , lookup

Transcript
Quantum Mechanics and Split Peas
IB Criteria Assessed
Data Collection, Data Processing, Evaluation
Criteria
assessed
Aspect
1
2
3
Level
awarded
D
DCP
CE
I. Introduction
We have seen that Bohr was oh-so-close to explaining the true nature of the electron. However,
Bohr’s theories were too simplistic for multi-electron systems. It was evident that a new type of
thinking would be needed to describe the what’s and where’s of the electron. Luckily, some
pretty famous scientists (including one named Einstein) were already on the task. Quantum
Mechanics basically threw out Newtonian physics and applied completely different rules to
describe things. The important thing to remember is that quantum describes things that are really
small and really fast.
II. Purpose
In this activity, we will attempt to concretize the ideas of quantum mechanics, orbitals, and
probability models.
III. Materials
40 ml of split peas (beans?)
Funnel
Target
IV. Procedure
1. Position the target so that the funnel is directly over the center of the target.
2. Separate the peas into equal volumes in the two 50 ml graduated cylinders.
3. Have one member of the group place a finger over the end of the funnel and then add 20 ml of
the peas into the funnel.
4. Release the peas so that they fall onto the target.
5. Use the rules below to count how many peas are in each area of the target.
6. After completing the counting, repeat steps 1-5 with all 40 ml of peas.(3 times)
7. Record all data on the data table.
8. When done, place all of the peas in a beaker and return to your seat.
Rules for counting:
o If a pea is completely within an area, it belongs to that area.
o If the pea is on a line, it belongs to the area that the greater portion of its volume
occupies.
o If the pea is on a line, and seems to be equally in two areas, it belongs to the area nearest
the center.
o Any part of a pea counts as a pea.
6
5
4
3
2
1
The areas are
numbered as this
picture.
Sample Data Table:
Area #
1
2
3
4
5
6
Total
Run 1
# of peas
% of total
Area #
1
2
3
Run 2
# of peas
% of total
4
5
6
Total
Questions:
Answer the following questions in complete sentences.
1. In the first run, which area did the most peas land in?
2. Did this change for the second/ third run?
3. If you were to do this again, only you had to predict where 90% of the peas would fall, what would
your prediction be?
4. Does your 90% prediction mean that every pea will fall where you think?
5. Explain how these results mimic the orbitals described in the quantum mechanical model of the atom.
Lab Writeup:
This will be a formal DCP/CE full lab. You are required to follow the steps for a complete DCP/CE lab
writeup.(Hand in these sheets with your lab)