Download Chapter 29A Worksheet - Rose

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Neutron magnetic moment wikipedia , lookup

Magnetic monopole wikipedia , lookup

Mathematical descriptions of the electromagnetic field wikipedia , lookup

Geomagnetic storm wikipedia , lookup

Electromagnetism wikipedia , lookup

Earth's magnetic field wikipedia , lookup

Magnetotactic bacteria wikipedia , lookup

Magnetometer wikipedia , lookup

Magnetotellurics wikipedia , lookup

Magnet wikipedia , lookup

Magnetism wikipedia , lookup

Electromagnetic field wikipedia , lookup

Superconducting magnet wikipedia , lookup

Force between magnets wikipedia , lookup

Giant magnetoresistance wikipedia , lookup

Magnetoreception wikipedia , lookup

Ferrofluid wikipedia , lookup

Magnetohydrodynamics wikipedia , lookup

Magnetochemistry wikipedia , lookup

Lorentz force wikipedia , lookup

Electrical resistance and conductance wikipedia , lookup

History of geomagnetism wikipedia , lookup

Ferromagnetism wikipedia , lookup

Skin effect wikipedia , lookup

Friction-plate electromagnetic couplings wikipedia , lookup

Electromagnet wikipedia , lookup

Faraday paradox wikipedia , lookup

Electromotive force wikipedia , lookup

Transcript
Homework Set 29A
PH 113 – 10
Q1. A long, straight conductor passes through the center of a metal ring, perpendicular
to its plane. If the current in the conductor increases, is a current induced in the
ring? Explain.
P1.
A single loop of wire with an area of 0.0900 m2 is in a uniform magnetic field that has
an initial value of 3.80 T, is perpendicular to the plane of the loop, and is decreasing
at a constant rate of 0.190 T/s. (A) What emf is induced in this loop? (B) If the
loop has a resistance of 0.600 Ω, find the current induced in the loop.
P2.
A coil 4.00 cm in radius, containing 500 turns, is placed in a uniform magnetic field
𝑇
𝑠
𝑇
𝑠
that varies with time according to 𝐵 = (0.0120 ) 𝑡 + (3.00 × 10−5 4 )𝑡 4 . The coil is
connected to a 600-Ω resistor, and its plane is perpendicular to the magnetic field.
You can ignore the resistance of the coil. (A) Find the magnitude of the induced emf
in the coil as a function of time. (B) What is the current in the resistor at time t =
5.00 s?
P3.
A closely wound rectangular coil of 80 turns has dimensions of 25.0 cm by 40.0 cm.
The plane of the coil is rotated from a position where it makes an angle of 37.0° with
a magnetic field of 1.10 T to a position perpendicular to the field. The rotation takes
0.0600 s. What is the average emf induced in the coil?
P4.
The conducting rod ab shown in the figure below sits on top of a conductor and is
able to slide with negligible friction on the conductor. The apparatus is in a uniform
magnetic field of 0.800 T, perpendicular to the plane of the figure. (A) Find the
magnitude of the emf induced in the rod when it is moving toward the right with a
speed of 7.50 m/s. (B) In what direction does the current flow in the rod? (C) If
the resistance of the circuit is 1.50 Ω (assumed to be constant), find the force
(magnitude and direction) required to keep the rod moving to the right with a
constant speed of 7.50 m/s. (D) Compare the rate at which mechanical work is done
by the force (Fv) with the rate at which thermal energy is developed in the circuit
(I2R).