Download 18.6 Electric Field Lines

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Magnetic monopole wikipedia , lookup

History of electromagnetic theory wikipedia , lookup

Maxwell's equations wikipedia , lookup

Lorentz force wikipedia , lookup

Electric charge wikipedia , lookup

Electrostatics wikipedia , lookup

Transcript
OpenStax-CNX module: m52387
1
∗
18.6 Electric Field Lines
Bobby Bailey
Based on Electric Field Lines: Multiple Charges† by
OpenStax College
This work is produced by OpenStax-CNX and licensed under the
Creative Commons Attribution License 4.0‡
Abstract
• Calculate the total force (magnitude and direction) exerted on a test charge from more than
one charge
• Describe an electric eld diagram of a positive point charge; of a negative point charge with twice
the magnitude of positive charge
• Draw the electric eld lines between two points of the same charge; between two points of opposite
charge.
Drawings using lines to represent electric elds around charged objects are very useful in visualizing
eld strength and direction. Since the electric eld has both magnitude and direction, it is a vector. Like
all vectors, the electric eld can be represented by an arrow that has length proportional to its magnitude
and that points in the correct direction. (We have used arrows extensively to represent force vectors, for
example.)
Figure 1 shows two pictorial representations of the same electric eld created by a positive point charge
Q. Figure 1 (b) shows the standard representation using continuous lines. Figure 1 (b) shows numerous
individual arrows with each arrow representing the force on a test charge q. Field lines are essentially a map
of innitesimal force vectors.
∗ Version
1.1: Dec 21, 2014 8:37 pm -0600
† http://cnx.org/content/m42312/1.7/
‡ http://creativecommons.org/licenses/by/4.0/
http://cnx.org/content/m52387/1.1/
OpenStax-CNX module: m52387
2
Figure 1: Two equivalent representations of the electric eld due to a positive charge Q. (a) Arrows
representing the electric eld's magnitude and direction. (b) In the standard representation, the arrows
are replaced by continuous eld lines having the same direction at any point as the electric eld. The
closeness of the lines is directly related to the strength of the electric eld. A test charge placed anywhere
will feel a force in the direction of the eld line; this force will have a strength proportional to the density
of the lines (being greater near the charge, for example).
Note that the electric eld is dened for a positive test charge q, so that the eld lines point away
from a positive charge and toward a negative charge. (See Figure 2.) The electric eld strength is exactly
proportional to the number of eld lines per unit area, since the magnitude of the electric eld for a point
charge is E = k|Q|/r and area is proportional to r . This pictorial representation, in which eld lines
represent the direction and their closeness (that is, their areal density or the number of lines crossing a unit
area) represents strength, is used for all elds: electrostatic, gravitational, magnetic, and others.
2
2
Figure 2: The electric eld surrounding three dierent point charges. (a) A positive charge. (b) A
negative charge of equal magnitude. (c) A larger negative charge.
In many situations, there are multiple charges. The total electric eld created by multiple charges is the
http://cnx.org/content/m52387/1.1/
OpenStax-CNX module: m52387
3
vector sum of the individual elds created by each charge.
Figure 3 shows how the electric eld from two point charges can be drawn by nding the total eld at
representative points and drawing electric eld lines consistent with those points. While the electric elds
from multiple charges are more complex than those of single charges, some simple features are easily noticed.
For example, the eld is weaker between like charges, as shown by the lines being farther apart in that
region. (This is because the elds from each charge exert opposing forces on any charge placed between
them.) (See Figure 3 and Figure 4(a).) Furthermore, at a great distance from two like charges, the eld
becomes identical to the eld from a single, larger charge.
Figure 4(b) shows the electric eld of two unlike charges. The eld is stronger between the charges. In
that region, the elds from each charge are in the same direction, and so their strengths add. The eld of
two unlike charges is weak at large distances, because the elds of the individual charges are in opposite
directions and so their strengths subtract. At very large distances, the eld of two unlike charges looks like
that of a smaller single charge.
Figure 3: Two positive point charges q1 and q2 produce the resultant electric eld shown. The eld is
calculated at representative points and then smooth eld lines drawn following the rules outlined in the
text.
http://cnx.org/content/m52387/1.1/
OpenStax-CNX module: m52387
4
Figure 4: (a) Two negative charges produce the elds shown. It is very similar to the eld produced
by two positive charges, except that the directions are reversed. The eld is clearly weaker between the
charges. The individual forces on a test charge in that region are in opposite directions. (b) Two opposite
charges produce the eld shown, which is stronger in the region between the charges.
We use electric eld lines to visualize and analyze electric elds (the lines are a pictorial tool, not a physical
entity in themselves). The properties of electric eld lines for any charge distribution can be summarized as
follows:
1. Field lines must begin on positive charges and terminate on negative charges, or at innity in the
hypothetical case of isolated charges.
2. The number of eld lines leaving a positive charge or entering a negative charge is proportional to the
magnitude of the charge.
3. The strength of the eld is proportional to the closeness of the eld linesmore precisely, it is proportional to the number of lines per unit area perpendicular to the lines.
4. The direction of the electric eld is tangent to the eld line at any point in space.
5. Field lines can never cross.
The last property means that the eld is unique at any point. The eld line represents the direction of the
eld; so if they crossed, the eld would have two directions at that location (an impossibility if the eld is
http://cnx.org/content/m52387/1.1/
OpenStax-CNX module: m52387
5
unique).
1 Section Summary
•
•
•
•
•
•
Drawings of electric eld lines are useful visual tools. The properties of electric eld lines for any
charge distribution are that:
Field lines must begin on positive charges and terminate on negative charges, or at innity in the
hypothetical case of isolated charges.
The number of eld lines leaving a positive charge or entering a negative charge is proportional to the
magnitude of the charge.
The strength of the eld is proportional to the closeness of the eld linesmore precisely, it is proportional to the number of lines per unit area perpendicular to the lines.
The direction of the electric eld is tangent to the eld line at any point in space.
Field lines can never cross.
2 Conceptual Questions
Exercise 1
Compare and contrast the Coulomb force eld and the electric eld. To do this, make a list of
ve properties for the Coulomb force eld analogous to the ve properties listed for electric eld
lines. Compare each item in your list of Coulomb force eld properties with those of the electric
eldare they the same or dierent? (For example, electric eld lines cannot cross. Is the same
true for Coulomb eld lines?)
3 Problem Exercises
Exercise 2
(a) Sketch the electric eld lines near a point charge +q. (b) Do the same for a point charge
.
Exercise 3
Sketch the electric eld lines a long distance from the charge distributions shown in Figure 4 (a)
and (b)
Exercise 4
Figure 5 shows the electric eld lines near two charges q and q . What is the ratio of their
magnitudes? (b) Sketch the electric eld lines a long distance from the charges shown in the gure.
− − 3.00q
1
http://cnx.org/content/m52387/1.1/
2
OpenStax-CNX module: m52387
Figure 5: The electric eld near two charges.
Exercise 5
Sketch the electric eld lines in the vicinity of two opposite charges, where the negative charge is
three times greater in magnitude than the positive. (See Figure 5 for a similar situation).
Glossary
Denition 1: electric eld
a three-dimensional map of the electric force extended out into space from a point charge
Denition 2: electric eld lines
a series of lines drawn from a point charge representing the magnitude and direction of force exerted
by that charge
Denition 3: vector
a quantity with both magnitude and direction
Denition 4: vector addition
mathematical combination of two or more vectors, including their magnitudes, directions, and
positions
http://cnx.org/content/m52387/1.1/
6