Download DEVELOPMENT AND EVALUATION OF CONTROLLED RELEASE

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Plateau principle wikipedia , lookup

Biosimilar wikipedia , lookup

Compounding wikipedia , lookup

Polysubstance dependence wikipedia , lookup

Pharmacogenomics wikipedia , lookup

Nicholas A. Peppas wikipedia , lookup

Medication wikipedia , lookup

Prescription costs wikipedia , lookup

Theralizumab wikipedia , lookup

Bad Pharma wikipedia , lookup

Bilastine wikipedia , lookup

Prescription drug prices in the United States wikipedia , lookup

Drug design wikipedia , lookup

Drug discovery wikipedia , lookup

Pharmaceutical industry wikipedia , lookup

Neuropharmacology wikipedia , lookup

Drug interaction wikipedia , lookup

Pharmacokinetics wikipedia , lookup

Pharmacognosy wikipedia , lookup

Sol–gel process wikipedia , lookup

Transcript
“DESIGN AND CHARACTERISTION OF NANOEMULSION BASED
FLURBIPROFEN GEL FOR TOPICAL DELIVERY”
M. Pharm. Dissertation Protocol
Submitted to the
Rajiv Gandhi University of Health Sciences, Karnataka.
Bangalore
By
DHARMENDRA CHAUDHARY
B. Pharm.
Under the Guidance of
Mr. SARFARAZ Md.
M. Pharm.
Asst. Professor
Department of Pharmaceutics
DEPARTMENT OF PHARMACEUTICS
N.E.T. PHARMACY COLLEGE,
RAICHUR
2013
Rajiv Gandhi University of Health Sciences, Karnataka
Bangalore
ANNEXURE II
PROFORMA FOR REGISTRATION OF SUBJECTS FOR DISSERTATION
MR.DHARMENDRA
1
Name of candidate and address
CHAUDHARY
(In Block Letters)
S/O-RAM KARAN CHAUDHARY,
JABDI-2
DIST- SARLAHI, NEPAL
2
Name of the Institute
N.E.T.PHARMACY COLLEGE,
RAICHUR.
3
Course of study and subject:
M.PHARM. PHARMACEUTICS.
4
Date of admission of course:
5
Title of the topic:
26-12-2012
“DESIGN AND CHARACTERISTION OF NANOEMULSION
BASED FLURBIPROFEN GEL FOR TOPICAL DELIVERY”
6
Brief Resume of this intended work:
6.1 Need for the study
6.2 Review of Literature
6.3 Objectives of study
Enclosure-I
Enclosure-II
Enclosure-III
7
Materials and Methods:
7.1 Source of data
Enclosure-IV
7.2 Method of collection of data (Including sampling procedure, if any)
Enclosure-V
7.3 Does the study require any investigation or interventions to be conducted on
patients of humans or animals? If so, please describe briefly.
Yes
7.4 Has ethical clearance been obtained from your institution in case of 7.3?
Yes: IAEC NO: 576/2002/bc/IAEC/CPSCEA
8
List of References
Enclosure-VI
2
9
Signature of the candidate
10
Remarks of the Guide
11
Name and designation of
(in block letters)
11.1 Guide
The proposed work can be carried out in the
laboratory.
Mr. SARFARAZ Md.
Assistant Professor
Dept. of Pharmaceutics,
N.E.T. Pharmacy college,
RAICHUR- 584103.
11.2 Signature
11.3 Co-Guide (if any)
------------
11.4 Signature
------------
11.5 Head of Department
Dr. H. DODDAYYA
Professor
Dept. of Pharmaceutics.
.
11.6 Signature
12
12.1 Remarks of the
Chairman and
Principal
Forwarded for scrutiny
Dr. H. DODDAYYA
Principal,
N. E. T. Pharmacy College,
RAICHUR-584103.
12.2 Signature
3
Enclosure-I
6) Brief resume of the intended work.
6.1) Need for the study:
Flurbiprofen a propionic acid derivative is an NSAID (non-steroidal anti-inflammatory
drug). It is used in musculoskeletal system and joint disorders such as ankylosing spondylitis,
osteoarthritis, rheumatoid arthritis, in soft-tissue injuries such as sprains and strains, for
postoperative pain, in mild to moderate pain including dysmenorrhoea and migraine.
Flurbiprofen is also used as a lozenge in symptomatic relief of sore throats. Flurbiprofen
sodium is used in eye drops to inhibit intra-operative miosis and to control postoperative
inflammation of the anterior segment of the eye.
Flurbiprofen is practically insoluble in water, freely soluble in alcohol and in
dichloromethane; dissolves in aqueous solution of alkali hydroxides and carbonates.
Flurbiprofen sodium is sparingly soluble in water1. Poorly water soluble drugs are associated
with slow drug absorption leading eventually to inadequate and variable bioavaibility2.
Oral administration of flurbiprofen is associated with severe gastrointestinal adverse events
including abdominal discomfort, constipation, diarrhea, dyspepsia, nausea and vomiting;
these are usually mild and reversible but in some patient’s peptic ulceration and severe
gastrointestinal bleeding may occur. Moreover, it requires frequent dosing due to its short
elimination half-life of 3.9 hr. These facts raise a need for a long-term sustained delivery of
flurbiprofen1, 3, 4.
The transdermal route of administration is recognised as one of the potential route for local
and systemic delivery of drugs. Transdermal delivery not only provides controlled, constant
administration of the drug but also allows continuous input of drug with short biological half
4
life, reduced frequency of administration, reduced side effects, reduced load on digestive tract
and liver that oral route places and improved patient compliance5.
Many of the dermal vehicles contain chemical enhancers and solvents to modify drug
permeation through skin. But use of these chemical enhancers may be harmful, especially in
chronic application, as many of them are irritants. Therefore, it is desirable to develop a
topical vehicle system that does not require the use of chemical enhancers to facilitate drug
permeation through the skin. One of the most promising techniques for enhancement of skin
permeation of drugs is nanoemulsion6. Recently, increasing attention has been focused on
nanoemulsion based drug delivery system due to their ease of formulation with biocompatible
excipients, and unique properties such as smaller droplet size, increasing solubility and
dissolution rate, improving diffusion and mucosal permeability7. Nanoemulsions offer several
significant advantages including low skin irritation, powerful permeation ability, and high
drug-loading capacity for topical delivery when compared with the other carriers such as
liposome or solid lipid nanoparticles8.
Nanoemulsions are quaternary system composed of an oil phase, a water phase, surfactant
frequently in combination with co-surfactant. These spontaneously formed systems possess
precise physiochemical properties such as transparency, optical isotropy, low viscosity and
thermodynamic stability. In stable emulsion, droplet diameter is usually within range of 10100nm (100-1000 A°)9. They are kinetically stable without any apparent flocculation or
coalescence during the long term storage due to their nanometre sized droplets10,
11
. The
utility of a nanoemulsion has been successfully established in optimising the therapeutic
performance of many lipophilic drugs which further justifies rationale of the study12. The
high solubilising capacity of a nanoemulsion enables them to increase the solubility of poorly
5
water soluble drugs. Both increase in solute concentration and tendency of drug to favour
portioning into stratum corneum makes nanoemulsion a useful vehicle to enhance
transdermal drug permeability13.
Hence an attempt is made to prepare nanoemulsion based gel of flurbiprofen that can
increase the solubility as well as permeability of the drug.
Enclosure-II
6.2) Review of literature:
 Balakrishnan P et. al., studied the effect of process parameters on nanoemulsion droplet
size and distribution in SPG (Shirasu-porous-glass) membrane emulsification. A SPG
membrane with a mean pore size of 2.5 µm was used to produce an O/W nanoemulsion
of flurbiprofen consisting of methylene chloride as dispersed phase, polyvinyl alcohol
(PVA) as the stabilizer and a mixture of Tween 20 and Tween 80 in demineralized water
as the continuous phase. Increasing the agitator speed and stabilizer concentration
increased the z-average diameter and decreased the size uniformity. There was a linear
relationship between the increased feed pressure and decreased z-average diameter of
emulsion droplets. The nanoemulsion composed of oil, water, PVA and the surfactant
mixture at the weight ratio of 10/100/1/514.
 Jin-qiu et. al., prepared flurbiprofen axetil nanoemulsion-in situ gel system (FBA/NEISG) and observed its ocular pharmacokinetics, rheological behavior, TEM images,
irritation and cornea retention. Nanoemulsion was prepared by high-speed shear and
homogenization process, and then mixed with gellan gum to prepare FBA/NE-ISG.
Rheological study showed that FBA/NE-ISG possesses strong gelation capacity; TEM
images suggested no significant change in particle morphology of pre and post gelation.
6
Good ocular compatibility of FBA/NE-ISG was testified by the irritation test based on
histological examination. In-vivo fluorescence imaging system was applied to
investigate the characteristics of cornea retention, and the results indicated that the
nanoemulsion in-situ gel (NE-ISG) prolonged the cornea retention time significantly.
Pharmacokinetics of FBA/NE-ISG in rabbit aqueous humor showed that the ocular
bioavailability was improved greatly by the novel preparation15.
 Baboota S et. al., investigated the potential of nanoemulsion formulation for transdermal
delivery of celecoxib (CXB). The in-vitro skin permeation profile of optimized
formulations compared with CXB gel and nanoemulsion gel showed
significant
increase in the steady state flux (Jss), permeability coefficient (Kp) and enhancement
ratio (Er).The highest value of permeability parameters was obtained in formulation
consisting of 2% (m/m) of CXB, 10% (m/m) of oil phase (Sefsol 218 and Triacetin),
50% (m/m) of surfactant mixture (Tween-80 and Transcutol-P) and 40% (m/m) water.
The anti-inflammatory effects of formulation showed a significant increase (p < 0.05) in
inhibition after 24 hr compared to CXB gel and nanoemulsion gel on carrageenaninduced paw edema in rats. These results suggested that nanoemulsions are potential
vehicles for improved transdermal delivery of CXB6.
 Modi JD et. al., investigated the potential of a nanoemulsion formulation for topical
delivery of aceclofenac. The nanoemulsion area was identified by constructing
psedoternary phase diagram. The in-vitro skin profile of optimised formulation was
compared with that of aceclofenac conventional gel and nanoemulsion gel. A significant
increase in permeability parameters such as steady-state flux (Jss), permeability
coefficient (Kp), and enhancement ratio (Er) was observed in optimised nanoemulsion
7
formulation consist of 2% w/w of aceclofenac, 10% w/w of Labrafac, 45% w/w
surfactant mixture (Cremophor EL: Ethanol), and 43% w/w of distilled water. The antiinflammatory effects of formulation showed a significant increase in percent inhibition
value after 24 hr when compared with aceclofenac conventional gel and nanoemulsion
gel on carrageenan-induced paw edema in rats. These results suggested that
nanoemulsions are potential vehicles for transdermal delivery of aceclofenac16.
 Wais M et. al., investigated the nanoemulsion system for enhanced percutaneous
penetration of glibenclamide (GLBD). Pseudoternary phase diagrams were constructed
in order to optimize the surfactant, co-surfactant and surfactant: co-surfactant ratios
(Smix). The nanoemulsion formulation consisted of Labrac and Triacetin (1:1) as an
internal oil phase in external aqueous phase, Tween 80 as surfactant and diethylene
glycol monoethyl ether as co-surfactant. Pseudoternary phase diagram was developed to
determine the effect of the surfactant to co-surfactant ratio (Smix) on the emulsion
formation, a transparent region. The nanoemulsion formulation had small droplet size
(<117 nm), uniform size distribution (PI<0.247), and low viscosity (<73.0 mP). Novel
GLBD formulation could be designed and projected to be suitable for transdermal
application9.
 Idrees MA et. al., prepared flurbiprofen microemulsion for enhanced transdermal
delivery and studied effects of different surfactants and co-surfactants on its phase
behaviour. Various surfactant and co-surfactant mixtures in ratio of 2:1 (Smix) along
with oleic acid (oil) were selected and phase diagrams were constructed. In vitro
transdermal permeation of all microemulsion was high than saturated aqueous drug
solution. The type of surfactant did not affect the droplet size, propylene glycol as co-
8
surfactant produced the largest droplet and highest viscosity. Decrease in oil or Smix
concentration resulted in decrease of the droplet size and increase in permeation flux,
while decrease in viscosity also increased the permeation flux of microemulsion. Finally
the selected formulation comprising 5% flurbiprofen, 5% oleic acid, 46% Tween 20:
ethanol (2:1) and 44% water showed the highest transdermal flux and caused no
irritation17.
 Tirunagari M et. al., investigated the effect of β-cyclodextrin (β-CD) and co-solvents on
the solubility of flurbiprofen. The increase in solubility with 1 mM, 2 mM, and 3 mM
was found to be 7.02 times, 11.51 times and 11.41 times respectively from the phase
solubility diagram. The drug solubility was increased linearly up to 2 mM of β-CD
followed by hardly increasing the solubility. Later, the solubility of flurbiprofen in three
different co-solvents polyethylene glycol 400 (PEG 400), propylene glycol and ethanol
was determined and found to be 7.38 times, 19.43 times, and 12.34 times. From the
above results the optimum concentration of β-CD (2 mM) and one of the best co-solvent
(propylene glycol) was selected and the effect on increase in solubility by the
combination was found to be 18.85 times. It was concluded that co-solvent propylene
glycol was the best solubiliser among all selected18.
9
Enclosure-III
6.3) Objectives of the study:
The present study is planned with the following objectives:
1) To perform preformulation studies on drug.
2) To screen out surfactant, co-surfactant and construct the pseudoternary phase diagram
to identify nanoemulsion region.
3) To formulate nanoemulsion based gel by suitable methods.
4) To study drug and excipient interaction by using FT-IR and DSC instruments.
5) To characterize various physiochemical parameters for developed nanoemulsion gel.
6) To evaluate the nanoemulsion gel for in-vitro diffusion studies using Franz diffusion
cell or Keshari diffusion cell using artificial or biological membrane.
7) To perform in-vitro permeation studies on best formulations using rat abdominal skin.
8) To perform in-vivo studies on rat to compare anti-inflammatory effect of best
formulation with marketed formulation.
9) To perform the stability studies for selected formulations as per ICH guidelines.
Enclosure-IV
7) Materials and Methods:
7.1) Source of data:
Primary data: This data will be collected by conducting laboratory experiment and
recording the observation.
Secondary data: This data will be collected from:

Internet.

Review articles.

Research publications.

International and Indian journals. •Textbooks and reference books
10
Enclosure-V
7.2) Method of collection of data:
The data for the study is planned to collect from the laboratory-based experiments:
1. Preformulation studies like solubility, melting point and characterization of the drug
and excipients will be done by employing suitable methods. Compatibility of drug with
excipients is analyzed by using FT-Infra-Red Spectroscopy and Differential Scanning
Calorimetry instruments adopting reported methods.
2. Preparation
of
flurbiprofen
nanoemulsion
based
gel
by
spontaneous
nanoemulsification or any other suitable methods.
3. Characterization of developed nanoemulsion based gel for:
a. Physicochemical properties on nanoemulsions:
i.
Droplet size and Size distribution
ii.
Viscosity
iii.
Refractive index,
iv.
pH
v.
TEM photomicrographs
b. Total drug content by UV spectrophotometer.
c. Zeta potential using Zeta meter or any other suitable methods.
d. In-vitro drug release study using Franz diffusion cell with artificial or biological
membrane, or dialysis bag diffusion method or any other suitable methods.
e. In-vitro permeation studies employing rat abdominal skin.
f. In-vivo studies using rat to perform anti-inflammatory activity.
4. For selected formulations stability studies will be carried out using stability chamber as
per ICH guidelines.
11
STATISTICAL ANALYSIS
All values will be expressed as mean ± SEM for 10 animals in a group. Results
will be subjected to statistical analysis using one way ANOVA (analysis of variance)
followed by Dunnett’s test, p < 0.05 will be considered as statistically significant.
7.3 Does the study require any investigations or interventions to be conducted
on patients other human or animals? If so, please describe briefly:
YES: Study requires investigation on rat.
7.4 Has ethical clearance been obtained from your institute in case of 7.3:
YES: IAEC NO: 576/2002/bc/IAEC/CPCSEA
12
13
INSTITUTIONAL ANIMAL ETHICS COMMITTEE
N.E.T PHARMACY COLLEGE, RAICHUR-584103, KARNATAKA, INDIA.
The institutional animal ethics committee of N.E.T Pharmacy College, Raichur
assembled on 30-5-2013 to discuss about the details of animal experiments required to be
carried out by PG students of different departments for their project work
The following members were present.
1. Dr. H. DODDAYYA
CHAIRMAN
2. Dr. BHEEMACHARI
CONVENER
3. Dr. H. SRIDHARA
MEMBER
4. Dr. R. H. UDUPI
MEMBER
5. Mr. SHIVKUMAR
MEMBER
Each PG student requirement and experiments were discussed in detail. After thorough
discussions, the experiments to be carried out by the students have been approved.
14
15
Enclosure- VI
References
1. Martindale: The complete drug reference. 36th ed. Pharmaceutical press, London
Page; 61-62, 96.
2. Sriknath MV, Murali MBGV, Rao S, Sunil S, Ramanamurthy KV. Dissolution rate
enhancement of poorly soluble bicaluatmide using β- cyclodextrin inclusion
complexation. Int J Pharm Pharmceut Sci 2010; 2(1): 191-198.
3. Rang HP, Dale MM, Ritter JM, Flower RJ. Rang and Dale’s Pharmacology. 6th ed.
Elsevier, 2007; 227-237.
4. Heyneman CA, Lawless-Liday C, Wall GC. Oral versus topical NSAIDs in rheumatic
disease: A comparison. Drugs, 2000; 60: 555-574.
5. Patel DM, Kavitha K. Formulation and evaluation aspects of transdermal drug
delivery system: Review article. Int J Pharm Sci 2011; 6(2): 83-90.
6. Baboota S, Shakeel F, Ahuja A, Ali A, Shafiq S. Design, development and evaluation
of novel nanoemulsion formulation for transdermal potential of celocoxib. Acta
Pharm 2007; 157: 315-332.
7. Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria
chemotherapy.
Part
I:
Preformulation
studies,
formulation
design
and
physicochemical evaluation. Int J Pharm 2012; 431:138–148.
8. Sajid MA, Alam MS, Alam N, Qadry SAS, Alam M, Shamim M. Formulation,
characterisation and in-vivo assessment of topical nanoemulsion of betamethasone
valerate for psoriasis and dermatose. Int J Pharm 2013; 3(1):186-189.
9. Wais M, Samad A, Khale A, Akil M, Khan M. Investigation of nanoemulsion system
for transdermal delivery of glibenclamide. Int J Pharm Pharm Sci 2012; 4(4): 482487.
10. Nicolas A, Vandamme TF. The universality of low-energy nanoemulsification. Int J
Pharm 2009; 377: 142-147.
11. Nicolas A, Vandamme TF. Nanoemulsions and microemulsions: classification of
critical differences. Pharm Res 2011; 28: 978-985.
12. Date AA, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems:
formulation insights, application and advances. Nanomedicine 2010; 5: 1595-1616.
16
13. Sintov AC, Botner S. Transdermal drug delivery using microemulsion and aqueous
systems: Influence of skin storage conditions on the in vitro permeability of
diclofenac from aqueous vehicle systems. Int J Pharm 2006; 55: 311.
14. Dong HO, Balakrishnan P, Yu-Kuong O, Dae-Duk K. Effect of process parameters on
nanoemulsion size and distribution in SPG membrane emulsification. Int J Pharm
2011; 404:191-197.
15. Jin-qiu S, Yong G, Li G, Chun-liu Z, Jia-bi Z. Ion-sensitive nanoemulsion-in situ gel
system for ophthalmic delivery of flurbiprofen axetil. Acta Pharm Sci 2010; 45:120125.
16. Modi JD, Patel JK. Evaluate in vivo and in vitro model on Nanoemulsion-based gel
formulation aceclofenac. Int J Pharm Prof Res 2011 April; 2, (2).
17. Idrees MA, Rahman N, Ahmed S, Ali MY, Ahmad I. Enhanced transdermal delivery
of flurbiprofen via microemulsion: Effect of different types of surfactant and cosurfactant. DARU J Pharm Sci 2011; 19(6): 433-439.
18. Tirungari M, Mehveen N, Qureshi MF, Sultana JF, Tirungari V. Solubility
enhancement of flurbiprofen using different solubilising techniques. Int J Pharm
Pharmceut Sci 2004; 4(4).
17