Download Morphofunctional parameters of peritoneal macrophages of different

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Tissue engineering wikipedia , lookup

Cell encapsulation wikipedia , lookup

Cell growth wikipedia , lookup

Mitosis wikipedia , lookup

Cell culture wikipedia , lookup

Cellular differentiation wikipedia , lookup

Organ-on-a-chip wikipedia , lookup

Cytokinesis wikipedia , lookup

JADE1 wikipedia , lookup

SULF1 wikipedia , lookup

Chemotaxis wikipedia , lookup

Extracellular matrix wikipedia , lookup

List of types of proteins wikipedia , lookup

Amitosis wikipedia , lookup

Transcript
УДК:612.014.467/.112.3:612. 084:599.323.4:616 - 021.4
MORPHOFUNCTIONAL PARAMETERS OF PERITONEAL MACROPHAGES
OF DIFFERENT MICE STRAINS AT ASEPTIC INFLAMMATION
Svetlana Mikhailovna MIROSHNICHENKO1, Galina Andreevna KOVALENKO1,
Galina Sergeevna RUSSKIKH1, Olga Nikolaevna POTERYAEVA1,2, Lev Evgenyevich PANIN 1
1
Institute for Biochemistry of SB RAMS
630117, Novosibirsk, Timakov str., 2
2
Novosibirsk State Medical University of Minzdrav of Russia
630091, Novosibirsk, Krasnyi av., 52
This paper reports a decrease in macrophage chemotaxis in response to aseptic inflammation (induced by starch introduction) of
A/Sn mice by3 times and Balb/c lines by 1.6 times as compared to albino mice macrophages. Adhesion of A/Sn mice
macrophages to the substrate is reduced by 1.6 times in comparison with two other species. Activity of matrix metalloproteinases
2.7 in macrophage homogenates was shown to be increased in all lines when macrophages were cultured for 7 days. In spite of
this the dynamics of enzyme activity growth is in correlation morphological characteristics of the cells (adhesion, spreading,
monolayer formation and contact inhibition). The initial activity of matrix metalloproteinases of macrophages to be decreased in
A/Sn mice and increased in Balb/c mice as compared with the macrophages of albino mice.
Key words: aseptic inflammation, chemotaxis, adhesion activity of matrix metalloproteinases, F-actin.
CONTENTS
1. Гольдберг Е.Д., Дыгай А.М., Шахов В.П. Методы культуры тканей в гематологии. Томск, 1992. 85–86.
2. Гольдберг Е.Д., Масная Н.В., Чурин А.А. Показатели иммунитета у мышей разных линий // Бюл. эксперим.
биол. мед. 2005. 140. (8). 189–191.
3. Нестеренко Л.Н., Капина Н.А., Алт А.С. Течение хламидиоза легких у мышей инбредных линий,
отличающихся генетически детерминированной чувствительностью к туберкулезу // Молек. генетика микробиол.
вирусол. 2010. (3). 12–16.
4. Потеряева О.Н. Матриксные металлопротеазы: строение, регуляция, роль в развитии патологических
состояний
(обзор
литературы)
//
Медицина
и
образование
в
Сибири.
2010.
5.
http://ngmu.ru/cozo/mos/article/text_full.php?id=449
5. Потеряева О.Н., Русских Г.С., Панин Л.Е. Анализ активности матриксных металлопротеиназ и а1протеиназного ингибитора в сыворотке крови больных сахарным диабетом 2 типа // Бюл. эксперим. биол. мед.
2011. 152. (11). 509–511.
6. Харьковская Н.А., Краснова Т.А., Клепиков Н.Н. Онкологическая и генетическая характеристика мышей A/Sn
// Эксперим. онкол. 2000. (3). 157–159.
7. Шутова М.С., Александрова А.Ю. Сравнительное исследование распластывания номальных и
трансформированных фибробластов. Роль полимеризации микрофиламентов и актин-миозинового сокращения //
Цитология. 2010. 52. (1). 41–45.
8. Castro A.P., Aquas A.B., Silva M.T. Adjuvant treatment increases the resistance to Mycobacterium avium infection of
Mycobacteria-susceptible Balb/c // Clin. Exp. Immunol. 1993. 92. 466–472.
9. Cesar A. Ugarte-Gil Paul Elkington, Robert H. Gilman et all. Induced sputum MMP-1, -3 and -8 con-centrations
during treatment of tuberculosis // PLOS One. 2013. 8. (4). ID e61333.
10. Ciobanasu C., Faivre B., Le Clainche C. Actin dynamics associated with focal adhesions // Int. J. Cell Biol. 2012.
ID 9412925.
11. Fazal F., Minhajuddin M., Bijli K.M. et al. Evidence for actin cytoskeleton-dependent and independent for
RelA/p65 nuclear translocation in endothelial cells // J. Biol. Chem. 2007. 282. 3940–3950.
12. May R.C., Machesky L.M. Phagocytosis and actin cytoskeleton // J. Cell Sci. 2001. 114. 1061–1077.
13. Murray M.Y., Howe J.D., Birkland T.P. Macrophage migration and invasion is regulated by MMP10 expression //
PLOS One. 2013. 8. (5). ID e163555.
14. Wang W., Goswami S., Sahai E. et al. Tumor cells caught in the act of invading: their strategy for enhanced cell
motility // Trends Cell Biol. 2005. 15. (3). 138–145.
15. Yamanishi Y., Boyle D.L., Rosengren S. et al. Regional analysis of p53 mutations in rheumatoid arthritis sinovium //
Proc. Natl. Acad. Sci. USA. 2002. 99. (5). 10025–10030.
Miroshnichenko S.M. – researcher of laboratory of molecular mechanisms of intercellular interactions, e-mail:
[email protected]
Kovalenko G.A. – candidate of medical sciences, senior researcher of laboratory of molecular mechanisms of intercellular
interactions, e-mail: [email protected]
Russkikh G.S. – candidate of medical sciences, senior researcher of laboratory of medical biotechnology, e-mail:
[email protected]
Poteryaeva O.N. – doctor of medical sciences, professor of the general and bioorganic chemistry department, e-mail:
[email protected]
Panin L.E. – doctor of medical sciences, academician of RAMS, director, e-mail: [email protected]