Download half-life - Knittig Science

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Isotopic labeling wikipedia , lookup

Two-dimensional nuclear magnetic resonance spectroscopy wikipedia , lookup

Nuclear fission wikipedia , lookup

Nuclear transmutation wikipedia , lookup

Radioactive decay wikipedia , lookup

Isotope wikipedia , lookup

Beta decay wikipedia , lookup

Nuclear fusion wikipedia , lookup

Valley of stability wikipedia , lookup

P-nuclei wikipedia , lookup

Nuclear binding energy wikipedia , lookup

Nuclear drip line wikipedia , lookup

Atomic nucleus wikipedia , lookup

Transcript
Plan for Today (AP Physics 2)
• Lecture/Notes on Decay Rates and HalfLife
• Half life multiple choice practice
Size of Nuclei
• Rutherford first investigated
• Using conservation of energy – how close
an alpha particle could get to the nucleus
before being turned around (KE to
electrical PE)
Size of Nuclei
New Unit
• Femtometer (fm) AKA Fermi
• 1 fm = 10^-15 m
Radius of Nuclei
• All nuclei have nearly the same density
Nuclear Force
• AKA strong force
• It’s what’s holding the nucleus together
(protons would want to repel each other)
• Short range (around 2 fm)
• Protons and neutrons attract each other
via this nuclear strong force
• Much stronger than coulomb repulsive
force at short distances
Stable Nuclei
• Around 260 stable nuclei
• Light nuclei most stable if they have
about equal numbers of protons and
neutrons (N = Z), heavy nuclei need
more neutrons than protons
• More neutrons needed to “dilute” nuclear
charge density
• With Z = 83, no more stable nuclei –
repulsive forces between protons can’t be
compensated for by neutrons
Stability Curve
A stable nucleus remains
forever, but as the ratio
of N/Z gets larger, the
atoms decay.
Elements with Z > 82
are all unstable.
140
Neutron number N
Nuclear particles are
held together by a
nuclear strong force.
120
100
Stable
nuclei
80
60
40
Z=N
20
20 40
60 80 100
Atomic number Z
Mass
• It is convenient to use unified mass units, u,
to express masses
– 1 u = 1.660 559 x 10-27 kg
– Based on definition that the mass of one atom of
C-12 is exactly 12 u
• Mass can also be expressed in MeV/c2
– From ER = m c2
– 1 u = 931.494 MeV/c2
Atomic Mass Unit, u
One atomic mass unit (1 u) is equal to onetwelfth of the mass of the most abundant
form of the carbon atom--carbon-12.
Atomic mass unit: 1 u = 1.6606 x 10-27 kg
Common atomic masses:
Proton: 1.007276 u
Neutron: 1.008665 u
Electron: 0.00055 u
Hydrogen: 1.007825 u
Exampe 2: The average atomic mass of
Boron-11 is 11.009305 u. What is the mass
of the nucleus of one boron atom in kg?
11
5
B = 11.009305
Electron: 0.00055 u
The mass of the nucleus is the atomic mass
less the mass of Z = 5 electrons:
Mass = 11.009305 u – 5(0.00055 u)
1 boron nucleus = 11.00656 u
 1.6606 x 10-27 kg 
m  11.00656 u 

1
u


m = 1.83 x 10-26 kg
Mass and Energy
Recall Einstein’s equivalency formula for m and E:
E  mc ; c  3 x 10 m/s
2
8
The energy of a mass of 1 u can be found:
E = (1 u)c2 = (1.66 x 10-27 kg)(3 x 108 m/s)2
E = 1.49 x 10-10 J
When converting
amu to energy:
Or
E = 931.5 MeV
c  931.5
2
MeV
u
Example 3: What is the rest mass energy of
a proton (1.007276 u)?
E = mc2 = (1.00726 u)(931.5 MeV/u)
Proton: E = 938.3 MeV
Similar conversions show other
rest mass energies:
Neutron: E = 939.6 MeV
Electron: E = 0.511 MeV
Example 3: What is the rest mass energy of
a proton (1.007276 u)?
E = mc2 = (1.00726 u)(931.5 MeV/u)
Proton: E = 938.3 MeV
Similar conversions show other
rest mass energies:
Neutron: E = 939.6 MeV
Electron: E = 0.511 MeV
Summary of Masses
Masses
Particle
kg
u
MeV/c
2
Proton
1.6726 x 10-27 1.007276
938.28
Neutron 1.6750 x 10-27 1.008665
939.57
Electron 9.109 x 10-31
5.486x10-4 0.511
The Mass Defect
The mass defect is the difference between
the rest mass of a nucleus and the sum of
the rest masses of its constituent nucleons.
The whole is less than the sum of the parts!
Consider the carbon-12 atom (12.00000 u):
Nuclear mass = Mass of atom – Electron masses
= 12.00000 u – 6(0.00055 u)
= 11.996706 u
The nucleus of the carbon-12 atom has this mass.
(Continued . . .)
Mass Defect (Continued)
Mass of carbon-12 nucleus: 11.996706
Proton: 1.007276 u
Neutron: 1.008665 u
The nucleus contains 6 protons and 6 neutrons:
6 p = 6(1.007276 u) = 6.043656 u
6 n = 6(1.008665 u) = 6.051990 u
Total mass of parts: = 12.095646 u
Mass defect mD = 12.095646 u – 11.996706 u
mD = 0.098940 u
Mass and Energy
• Total mass of a nucleus is always less
than the sum of the masses of nucleons
• Total energy of the nucleus is less than
the combined energy of the separated
nucleons
• Binding energy – difference in these
energies, energy that must be added to
break a nucleus apart
The Binding Energy
The binding energy EB of a nucleus is the
energy required to separate a nucleus into
its constituent parts.
EB = mDc2 where c2 = 931.5 MeV/u
The binding energy for the carbon-12 example is:
EB = (0.098940 u)(931.5 MeV/u)
Binding EB for C-12:
EB = 92.2 MeV
Binding Energy per Nucleon
An important way of comparing the nuclei of
atoms is finding their binding energy per nucleon:
Binding energy EB =  MeV 


per nucleon
A
 nucleon 
For our C-12 example A = 12 and:
EB 92.2 MeV
MeV

 7.68 nucleon
A
12
Formula for Mass Defect
The following formula is useful for mass defect:
Mass defect
mD
mD   ZmH  Nmn   M 
mH = 1.007825 u;
mn = 1.008665 u
Z is atomic number; N is neutron number;
M is mass of atom (including electrons).
By using the mass of the hydrogen atom, you avoid
the necessity of subtracting electron masses.
Example 4: Find the mass defect for the He
nucleus of helium-4. (M = 4.002603 u)
4
2
Mass defect
mD
mD   ZmH  Nmn   M 
ZmH = (2)(1.007825 u) = 2.015650 u
Nmn = (2)(1.008665 u) = 2.017330 u
M = 4.002603 u (From nuclide tables)
mD = (2.015650 u + 2.017330 u) - 4.002603 u
mD = 0.030377 u
Example 4 (Cont.) Find the binding energy per
nucleon for helium-4. (mD = 0.030377 u)
EB = mDc2 where c2 = 931.5 MeV/u
EB = (0.030377 u)(931.5 MeV/u) = 28.3 MeV
A total of 28.3 MeV is required To tear apart
the nucleons from the He-4 atom.
Since there are four nucleons, we find that
EB 28.3 MeV

 7.07
A
4
MeV
nucleon
Curve shows that
EB increases with
A and peaks at
A = 60. Heavier
nuclei are less
stable.
Green region is for
most stable atoms.
Binding Energy per nucleon
Binding Energy Vs. Mass Number
8
6
4
2
50
100 150 200 250
Mass number A
For heavier nuclei, energy is released when they
break up (fission). For lighter nuclei, energy is
released when they fuse together (fusion).
Radioactive Materials
The rate of decay for radioactive substances is
expressed in terms of the activity R, given by:
Activity
N
R
t
N = Number of
undecayed nuclei
One becquerel (Bq) is an activity equal to one
disintegration per second (1 s-1).
One curie (Ci) is the activity of a radioactive
material that decays at the rate of 3.7 x 1010 Bq
or 3.7 x 1010 disintegrations per second.
Units
• The unit of activity, R, is the Curie, Ci
– 1 Ci = 3.7 x 1010 decays/second
• The SI unit of activity is the Becquerel, Bq
– 1 Bq = 1 decay / second
• Therefore, 1 Ci = 3.7 x 1010 Bq
• The most commonly used units of activity
are the mCi and the µCi
The Decay Constant
• The number of particles that decay in a given
time is proportional to the total number of
particles in a radioactive sample
– ΔN = -λ N Δt
• λ is called the decay constant and determines the rate at
which the material will decay
• The decay rate or activity, R, of a sample is
defined as the number of decays per second
N
R
 N
t
The half-life T1/2 of
an isotope is the
time in which onehalf of its unstable
nuclei will decay.
1
N  N0  
2
n
Where n is number
of half-lives
Number Undecayed Nuclei
The Half-Life
No
N0
2
N0
4
1 2 3 4
Number of Half-lives
Decay Curve
• The decay curve follows
the equation
– N = No e- λt
• The half-life is also a
useful parameter
– The half-life is defined as
the time it takes for half
of any given number of
radioactive nuclei to
decay
T1 2 
ln 2


0.693

Half-Life (Cont.)
The same reasoning will apply to activity R or to
amount of material. In general, the following
three equations can be applied to radioactivity:
Nuclei Remaining
1
N  N0  
2
n
Mass Remaining
1
m  m0  
2
n
Activity R
1
R  R0  
2
n
Number of Half-lives:
t
n
T12
Example 6: A sample of iodine-131 has an
initial activity of 5 mCi. The half-life of I-131
is 8 days. What is the activity of the sample
32 days later?
First we determine the number of half-lives:
t
32 d
n

T1/ 2
8d
n
1
1
R  R0    5 mCi  
2
2
n = 4 half-lives
4
R = 0.313 mCi
There would also be 1/16 remaining of the
mass and 1/16 of the number of nuclei.
Conservation Laws
For any nuclear reaction, there are three
conservation laws which must be obeyed:
Conservation of Charge: The total charge of a
system can neither be increased nor decreased.
Conservation of Nucleons: The total number of
nucleons in a reaction must be unchanged.
Conservation of Mass Energy: The total massenergy of a system must not change in a
nuclear reaction.
Example 7: Use conservation criteria to
determine the unknown element in the
following nuclear reaction:
1
1
H  Li  He  X  energy
7
3
4
2
A
Z
Charge before = +1 + 3 = +4
Charge after = +2 + Z = +4
Z=4–2=2
(Helium has Z = 2)
Nucleons before = 1 + 7 = 8
Nucleons after = 4 + A = 8
1
1
(Thus, A = 4)
H  Li  He  He  energy
7
3
4
2
4
2
Summary (Radioactivity)
The half-life T1/2 of an isotope is the time in
which one-half of its unstable nuclei will decay.
Nuclei Remaining
1
N  N0  
2
n
Mass Remaining
1
m  m0  
2
n
Activity R
1
R  R0  
2
n
Number of Half-lives:
t
n
T12