Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
251y0211 10/07/02 Part I. ECO251 QBA1 FIRST HOUR EXAM OCTOBER 1, 2002 Name __________________ SECTION MWF 10 11 TR 11 12:30 (10 points) 1. (Lind et. al.) A student takes a survey of heights of 500 college women and divides them into 12 classes. Her first two class midpoints are 62.5" and 65.5". There are 111 women in the first class and 145 women in the second class. (5) a. What is the (width of the) class interval w ? b. What is the lower limit of the third class? c. What is the relative frequency of the second class? d. What is the cumulative relative frequency of the second class? e. If this distribution is skewed to the left, about what percent of the data is above the median? Solution: a) Since 65.5 - 62.5 = 3, the interval must be 3. b) The lower limit must be 67. If the class interval is 3, the class must extend by 1.5 on either side of the midpoint. The layout for the first three classes is given in the table below. n 500 f Class Midpoint F f Frel Fn f rel n 61 - 64 62.5 111 .222 111 .222 64 - 67 65.5 145 .290 256 .512 67 - 70 68.5 ? ? ? ? c) The relative frequency is .290 d) The cumulative relative frequency is .512, which might be found as the sum of .222 and .290. e) the median is defined as a point with 50% of the data above or below it. 2. Indicate whether the following are: Nominal Data, Ordinal Data, Interval Data, Continuous Ratio Data or Discrete Ratio Data. (3) a. A recent cartoon suggested that the numbers on pro Football jerseys be replaced by their salaries. What kind of data would the numbers be before the change? Ans: Nominal. b. What kind of data would the numbers usually be considered after the change? Ans: Continuous ratio. c. What kind of data is a sports editor's ranking of the top 5 teams.? Ans: Ordinal 3. All my family doctor's patient files are coded as follows: FS (Adult females who currently smoke); FN (Adult females who do not currently smoke); MS (Adult males who currently smoke) and MN (Adult males who do not currently smoke). Are these categories mutually exclusive and collectively exhaustive? If you say 'no' to either characteristic, explain. (2) Ans: The categories are mutually exclusive ( for instance no person who is coded FS will be in FN, MS or MN), but not collectively exhaustive because there is no reason to assume that all the family doctor's patients are adults. 1 251y0211 9/30/02 Part II. Compute an appropriate answer, showing your work (15 Points maximum - if you do more than 15 points, only your right answers will be counted.): 1) A sample of pipe outside diameters gives a mean of 14.0 inches and a standard deviation of 0.1 inches. a) If the median diameter is 14.1 inches and the mode is unknown (i) What is the maximum fraction of the pipes that could have a diameter below 13.8 x x 13 .8 14 inches? (1) Ans: Get a z-score. k z 2 . We know from the s 0.1 Chebyshef rule that the fraction in the tail below k is less than 1 2 . Since k k 2, this fraction is below 1 4 25%. (ii) Between what two diameters must at least 15/16 of the pipe diameters lie? (1) Ans: If only 116 1 k 2 are outside the interval, we must have k 2 16 or k 4. Thus the interval is k 14.0 4.1 14.0 0.4 or 13.6 to 14.4. (iii) Is this distribution skewed to the left or the right, or is it symmetrical? (1) Ans: Since the median is above the mean, it should be skewed to the left. b) If, instead, the median diameter is 14.0 inches and the mode is also 14.0 inches, between what two diameters must almost all the pipe diameters lie? (1) Ans: Since 14 30.1 14 0.3 is 3 standard deviations from the mean, the Empirical Rule (which applies because the mean, median and mode are equal) says that there will be almost none outside 13.7 to 14.3. c) What is the coefficient of variation for this sample of pipes? (1) Ans: C s x 0.114 0.0071 . 2) The newest computer in the headquarters of a firm that you are liquidating is three months old and the oldest is 97 months old. a) If the (absolute) frequencies are to be presented in a line graph in seven classes, what intervals would you use? Explain your reasoning using an appropriate formula and use it to fill in the table below.(3) 97 3 13 .42 so use 14. This is only a suggestion. Any number, like 15, somewhat above Ans: 7 13.42 will work, as long as you cover the range. Two possibilities are shown below. You should have shown only one. Class A B C D E F G From 3 17 31 45 59 73 87 to 16.9 30.9 44.9 58.9 72.9 86.9 100.9 From 0 15 30 45 60 75 90 to 14.9 29.9 44.9 59.9 74.9 89.9 104.9 b) What is the name of the type of graph that you are drawing (Is it a histogram?) and what would the x and y coordinates be of the last point on the line that you draw to represent the frequencies? (2) Ans: The graph is a frequency polygon and we must create an empty class to end it. For the first classification above, the interval is 14 and the midpoint of the last class on the table is 94, so the last point is x 108 , y 0 . For the second classification above, the interval is 15 and the midpoint of the last class on the table is 97.5, so the last point is x 112 .5, y 0 . 2 251y0211 9/30/02 3) For the numbers 50, 250, 450 and 650, compute the a) Geometric Mean b) Harmonic mean, c) Rootmean-square (2 each). Label each clearly. If you wish, d) Compute the geometric mean using natural or base 10 logarithms. (3 points if you need it here or two points if you need it in the next section - doing this is insurance, you cannot get more than cannot get more than 15 points on part II or 25 points on part III unless you do the extra credit in part III. ) x 1400 . This is not used in any of the following calculations and there is Solution: Note that no reason why you should have computed it! (a) The Geometric Mean. 1 x g x1 x 2 x3 x n n n 3656250000 x 4 50 250 450 650 4 3656250000 3656250000 1 4 0.25 245 .9002 . Do any of you really believe that 3656250000 1 4 3656250000 ? 4 (b) The Harmonic Mean. 1 1 xh n 1 1 1 x 4 50 250 450 650 4 0.0200000 0.0040000 0.0022222 0.0015385 1 1 1 1 1 1 0.0277607 0.00694017 . So xh 1 144 .089 . 1 1 4 0.00694017 n x As I explained several times, 1 1 could not possibly be 1 1 . n 4 1400 x (c) The Root-Mean-Square. 1 1 1 2 x rms x 2 50 2 250 2 450 2 650 2 2500 62500 202500 422500 n 4 4 1 690000 172500 . So x rms 4 1 n x 2 172500 415 .331 . (d) The geometric mean using logarithms. Using natural logarithms: 1 ln( x) 1 ln 50 ln 250 ln 450 ln 650 ln x g n 4 1 1 5.50493 245 .900 . 3.91202 5.52146 6.10925 6.47692 22 .0197 5.50493 . So x g e 4 4 Or using logarithms to the base 10: 1 log( x) 1 log50 log250 log450 log650 log x g n 4 1 1 1.69897 2.39794 2.65321 2.81291 9.56304 2.39076 . So 4 4 2.39706 x g 10 245 .900 . Notice that the original numbers and all the means are between 50 and 650. 3 251y0211 9/30/02 Part III. Do the following problems (25+ Points) 1. I have the following data for March electricity bills at a sample of 6 homes of similar sizes. 92 106 212 129 176 191 Compute the following: a) The Median (1) b) The Standard Deviation (4) c) The 2nd Quintile (2) Solution: Compute the Following: Note that x is in order Index 1 2 3 4 5 6 Total x 92 106 129 176 191 212 906 x2 8464 11236 16641 30976 36481 44944 148742 x x x x 2 -59 3481 -45 2025 -22 484 25 625 40 1600 61 3721 0 11936 Note that, to be reasonable, the mean, median and 3rd decile must fall between 92 and 212. You should have done either the third column or the fourth and fifth columns. If you did both you were wasting time. n 6, x 906 , x 2 148742 , x x 0.00, x x 2 11936 . a) Just put the numbers in order and average the middle numbers, x.5 Or formally: position pn 1 a.b .57 3.5 x3 x 4 129 176 152 .5 . 2 2 x1 p xa .b( xa1 xa ) so x1.5 x.5 x3 0.5( x 4 x3 ) 129 0.5(176 129 ) 152 .5 . b) x x 906 151 .00 n x x 6 s2 x 2 nx 2 n 1 148742 6151 2 2387 .2 or 5 2 11936 2387 .2 s 2387.2 48.85898 n 1 5 c) The 2nd quintile has 40% below it. position pn 1 a.b 0.47 2.8 . a 2, .b 0.8 . s2 x1 p x a .b( x a1 x a ) so x1.4 x.6 x 2 0.8( x3 x 2 ) 106 0.8(129 106 ) 124 .4 (New Formula: position 1 pn 1 a.b 1 0.4(5) 1 2.0 3.0 . a 3, .b 0.0 . x1 p xa .b( xa1 xa ) so x1.4 x.6 x3 0.0( x 4 x3 ) 129 0.0(176 129 ) 129 ) 4 251y0211 9/30/02 2. A bus line takes a sample of the distances ridden by commuters and gets the following. is investigating the amount of time customers are put on hold when they call. The times are tabulated below. (Assume that the numbers are a sample.) amount frequency F 4 9 10 10 15 20 12 4 13 23 33 48 68 80 less than 5 miles 5 - 9.99 miles 10 - 14.99 miles 15 - 19.99 miles 20 - 24.99 miles 25 - 29.99 miles 30 - 34.99 miles a. Calculate the Cumulative Frequency (1) b. Calculate The Mean (1) c. Calculate the Median (2) d. Calculate the Mode (1) e. Calculate the Variance (3) f. Calculate the Standard Deviation (2) g. Calculate the Interquartile Range (3) h. Calculate a Statistic showing Skewness and Interpret it (3) i. Make an ogive of the Data (Neatness Counts!)(2) j. Extra credit: Put a (horizontal) box plot below the ogive using the same scale. Solution: x is the midpoint of the class. Our convention is to use x as the midpoint of 0 to 2, not 1.99999. If you did this using computational formulas, you should have the table below. Row 1 2 3 4 5 6 7 Total x f class below 5 5-9.99 10-14.99 15-19.99 20-24.99 25-29.99 30-34.99 4 9 10 10 15 20 12 80 fx 2 fx 2.5 7.5 12.5 17.5 22.5 27.5 32.5 10.0 67.5 125.0 175.0 337.5 550.0 390.0 1655.0 25.0 506.2 1562.5 3062.5 7593.8 15125.0 12675.0 40550.0 fx3 62 3797 19531 53594 170859 415938 411938 1075719 Definitional formulas give you the table below. There is no reason to do both the tables for computational and definitional formulas. Row 1 2 3 4 5 6 7 Total class below 5 5-9.99 10-14.99 15-19.99 20-24.99 25-29.99 30-34.99 4 9 10 10 15 20 12 80 2.5 7.5 12.5 17.5 22.5 27.5 32.5 fx 10.0 67.5 125.0 175.0 337.5 550.0 390.0 1655.0 xx -18.1875 -13.1875 -8.1875 -3.1875 1.8125 6.8125 11.8125 f x x -72.750 -118.687 -81.875 -31.875 27.187 136.250 141.750 0.000 f x x 2 1323.14 1565.19 670.35 101.60 49.28 928.20 1674.42 6312.19 f x x 3 -24064.6 -20641.0 -5488.5 -323.9 89.3 6323.4 19779.1 -24326.1 fx 40550 , fx 1075719 , f x x 0, f x x 2 6312.19, and f x x 3 24326.1. Note that, to be reasonable, the mean, median and n f 80, fx x f 1655 , 2 3 quartiles must fall between 0 and 36. a. Calculate the Cumulative Frequency (1): (See above - in red) The cumulative frequency is the whole F column. b. Calculate the Mean (1): x fx 1655 20.6875 n 80 5 251y0211 9/29/02 c. Calculate the Median (2): position pn 1 .581 40.5 . This is above F 33 and below F 48, pN F .580 33 so the interval is 20-24.99. x1 p L p w so x1.5 x.5 20 5 22 .3333 15 f p d. Calculate the Mode (1) The mode is the midpoint of the largest group. Since 20 is the largest frequency, the modal group is 25 to 29.99 and the mode is 27.5. e. Calculate the Variance (3): s 2 s2 f x x n 1 2 fx 2 nx 2 n 1 40550 80 20 .6875 2 6312 .19 79 .9011 or 79 79 6312 .19 79 .9011 79 f. Calculate the Standard Deviation (2): s 79.9011 8.93874 g. Calculate the Interquartile Range (3): First Quartile: position pn 1 .25 81 20.25 . This is above pN F F 13 and below F 23 so the interval is 10-14.99. x1 p L p w gives us f p .2580 13 Q1 x1.25 x.75 10 5 10 3.5 13 .5 . 10 Third Quartile: position pn 1 .75 81 60.75 . This is above F 48 and below F 68, so the .7580 48 interval is 25-29.99. x1.75 x.25 25 5 25 3 28 .00 . 20 IQR Q3 Q1 28.00 13.50 14.5 . (New Formula: For the median - position 1 pn 1 1 0.579 40 .5 . This is the same result as on the previous page. For the first quartile - position 1 pn 1 1 0.2579 20.75 . This leads to the same result as above. For the third quartile - position 1 pn 1 1 0.7579 60 .25 . This leads to the same result as above.) h. Calculate a Statistic showing Skewness and interpret it (3): n k 3 fx 3 3x fx 2 2nx 3 80 1075719 320.6875 40550 280 20.6875 3 (n 1)( n 2) 7978 0.0129828 24325 .883 315 .82 . or k 3 n (n 1)( n 2) or g 1 k3 s 3 f x x 315 .82 8.93874 3 3 80 24326 .1 315 .82 79 78 0.4422 3mean mode 320 .6875 27 .5 2.286 std .deviation 8.93874 Because of the negative sign, the measures imply skewness to the left. i. Make an ogive of the Data (Neatness Counts!)(2) An ogive is a line graph of the cumulative frequency. It should hit zero on the left at the origin. The next point is 4 at x 5 . It continues to rise until x 35 , when the height is 80. It ends with a horizontal line. j. Your box plot should show the first and third quartiles at the left and right of the box and a vertical line across the box at the median. It should be immediately below the ogive and use the same x points. or Pearson's Measure of Skewness SK 6