Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Accelerated Math I Unit 3 (6 weeks)-State Framework is Unit 5 Lesson 1-Polynomials 1) Computation with Polynomials: a. Add & Subtract like terms 2 xy 3x b. Divide w/monomial: x c. Multiply with a focus on binomials using the distributive property: (x+3)(x-4) 2) Factoring: a. Area & Volume Models for concrete examples of multiplying integrated in the tasks i. Algeblocks ii. Algebra Tiles b. Grouping i. 3x+6+2x+4 = 5x+10 = 5(x+2) ii. 3xy+9+2x²y+6x = (3xy+9)+(2x²y+6x) = 3(xy+3)+2x(xy+3) = (3+2x)(xy+3) c. Trial & Error i. x²+4x+3 = (x+3)(x+1) d. Special Products i. (x+y)² = x²+2xy+y² ii. (x-y)² = x²-2xy+y² iii. (x+y)(x-y) = x²-y² iv. (x+a)(x+b) = x²+(a+b)x+ab v. (x+y)³ = x³+3x²y+3xy²+y³ vi. (x-y)³ = x³-3x²y+3xy²-y³ Lesson 2-Solving Quadratics 1) Review of transformations of f(x)=x² a. ax²+c i. x²-4 ii. x²+4 iii. 4x² iv. ¼x² b. Shifts i. f(x)=a(x-h)²+k ii. a=stretches/shrinks iii. h=moves left/right iv. k=moves up or down 2) 2 Forms of Trinomials: a. Vertex Form i. f(x)=a(x-h)²+k b. Standard Form i. f(x)=ax²+bx+c c. Characteristics i. Real Solutions: 1, 2, none ii. Domain & Range: inequality intervals b b iii. Vertex: (h,k) or ( ,f( )) 2a 2a b iv. Axis of Symmetry: x=h or x= 2a v. Zeros: x-intercepts (x,0) vi. Intercepts: x (x,0) & y (0,y) intercepts vii. Extremes: maximum or minimum (vertex) unless domain is restricted 1. Restricted domains a. Area to work in/length of fence 2. a=open up; -a=open down viii. Intervals or increase/decrease ix. Rates of Change: slope between 2 points d. Examples i. (x+3)²: shifts graph left 3; Vertex (-3,0); Axis of Symmetry x=-3; Zeros: x=-3; y-int=9;Minimum=(-3,0); 1 solution ii. (x-3)²: shifts graph right 3; Vertex (3,0); Axis of Symmetry x=3; Zeros: x=3; y-int= 9; Minimum=(3,0); 1 solution iii. 4(x+3)²: shifts graph left 3 & stretch 4; Vertex (-3,0); Axis of Symmetry x=-3; Zeros:x=-3; y-int.=36; Minimum=(-3,0); 1 solution iv. -¼(x+3)²: shifts graph left 3, shrinks ¼ & flips down; Vertex= (3,0); Axis of Symmetry x=-3; Zeros: x=-3; y-int= -2.25; Maximum=(-3,0); 1 solution v. 4x²+24x+37 = 4x²+24x+36+1 = 4(x+3)²+1; shifts graph left 3, stretches 4, and shifts up 1; Vertex=(-3,1); Axis of Symmetry x=3; Zeros=none; y-int=37; Minimum=(-3,1); no real solution Lesson 3-Quadratics-More Graphing 1) Bigger “a” values a. Practice of Lesson 2 2) Inequalities a. x²+3x +2>0 i. (x+1)(x+2)>0 1. Roots: x=-1 or x=-2 2. x<-2 or x>-1 b. x²+6x+7≤-2 i. x²+6x+9≤0 = (x+3)²≤0 1. x≤-3 Lesson 4-Complex Quadratics 1) Quadratic Formula: a. b b2 4ac 2a i. x²+6x-2 6 62 4(1)(2) 1. = 3 11 = the roots 2(1) 2) Discriminate: a. = b 2 4ac b. x intercepts/solutions i. = imaginary number 1. roots=2 imaginary solutions 2. real roots = no real solution 0 =1 solution ii. iii. =2 real solutions 3) Imaginary Numbers: a. imaginary number (i) b. 1 =i, i²= 1 ( 1 )=-1 c. 16 = 4i ; 5 = i 5 d. Computation: i. 6+7i+2i = 6+9i ii. 6(7i) = 42i iii. (3+2i)(4+7i) = 12 + 29i +14i² = 12 + 29i -14 = -2+29i 3 2i 1 i 3 3i 2i 2i 2 2(1) i 3 5 i iv. Conjugate: ( )= 1 i 1 i (1 i)2 1 1 2 e. Apply to Quadratic Complex Solutions b b2 4ac i. 2a 1. x²+6x+12 2. 6 62 4(1)(12) = 3 i 3 = the roots 2(1) Lesson 5-Connections 1) Rational Equations 1 1 x 2 x2 a. 2 x 2x 2x 2x 1 1 x 1 2 x3 b. 2 x 1 2x 2 2x 2 2x 2 1 1 x 1 x2 2x 3 c. x 2 x 1 ( x 2)( x 1) ( x 2)( x 1) ( x 2)( x 1) 2) Pythagorean Theorem a. a 2 b 2 c 2 i. 3²+b²=12² ; b²=135 ; b= 3 15