Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. B = 54 C = 112 b = 18 A 180 B C 180 54 112 14 Using the law of sine: a b sin A sin14 ab 18 5.4 sin A sin B sin B sin 54 c b sin C sin112 cb 18 20.6 sin C sin B sin B sin 54 A =12, a = 22.6, c = 7.4 A =14, a = 5.4, c = 20.6 A = 14, a = 7.4, c = 22.6 A = 12, a = 20.6, c = 5.4 Solve the equation on the interval [0, 2]: cos2x + 2 cos x + 1 = 0 Let u = cox u 2 2u 1 0 u 1 2 0 u 1 cos x 1 x /4, 7/4 /2, 3/2 2 Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. C = 110 a=5 b = 11 Using the law of cosine: c 2 a 2 b 2 2ab cos C c 52 112 2 *5*11cos(110 ) 13.6 Using the law of sine: sin A sin C a 5 sin A sin C sin110 20 a c c 13.6 B 180 A C 180 20 110 50 c = 13.6, A = 20, B = 50 c = 19.4, A = 18, B = 52 c = 16.5, A = 22, B = 48 no triangle Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. B = 43 C = 107 B = 14 A 180 B C 180 43 107 30 Using law of sine: a b sin A sin 30 ab 14 10.3 sin A sin B sin B sin 43 c b sin C sin107 cb 14 19.6 sin C sin B sin B sin 43 A = 30, a = 10.3, c = 19.6 A = 30, a = 2.3, c = 21.6 A = 28 , a = 19.6, c = 10.3 A = 28, a = 21.6, c = 12.3 5 of 25 Two sailboats leave a harbor in the Bahamas at the same time. The first sails at 20 mph in a direction 330°. The second sails at 34 mph in a direction 220°. Assuming that both boats maintain speed and heading, after 2 hours, how far apart are the boats? A 40° 30° C B In the above diagram, AC = b = 20 * 2 = 40 miles. AB = c = 34 * 2 = 68 miles. AC is sailing at a direction of 330° , so we get the labeled 30° = 360° - 330° AB is sailing at a direction of 220°, then we get the labeled 40° = 220° - 180°. The angle A = 180° - 40° - 30° = 110°. Using law of cosine a 2 b 2 c 2 2bc cos A 402 682 2 * 40 * 68cos110 a 89.9 miles 89.9 miles 70.5 miles 58.5 miles 95.9 miles 6 of 25 A vector v has initial point P1 and P2. Write v in terms of ai + bj: P1 = (-5, 1); P2 = (6, 3) PP 1 2 P2 P1 x2 x1 i y2 y1 j (6 (5))i (3 1) j 11i 2 j v = 8i + 5j v = 11i + 2j v = 5i + 8j v = 2i + 11j 7 of 25 Test the equation for symmetry with respect to the give axis, line, or pole: r = 4 cos ; the polar axis When ' r ' 4cos( ') 4cos( ) 4cos r So it has symmetry with respect to polar axis. may or may not have symmetry with respect to polar axis has symmetry with respect to polar axis 8 of 25 Solve the problem: 5x cos 3x + cos 2 2 5 x 3x 5 x 3x 5x 3x 2 cos 2 2 2cos 2 x cos x cos cos 2cos 2 2 2 2 2 2 2 sin 2x sin x 2 2 sin 2x sin x 2 cos 2x x 2 cos 2x cos 2 9 of 25 Use the given vectors to find the specified scalar: v = 10i + 5j; Find v v. v v v v 10 5 125 2 x 2 y 2 2 100 225 2500 125 10 of 25 Find the absolute value of the complex number: z = 9 - 5i z x 2 y 2 92 (5) 2 106 2^/14 ^/106 ^/14 2 11 of 25 Solve the equation on the interval [0, 2 ]: (tan x + ^/�3)(2cos x+1)=0 2 5 tan x 3 0 tan x 3 x , 3 3 or 1 2 4 2cos x 1 0 cos x x , 2 3 3 /3, 2/3 1/2, 1 2/3, 4/3, 5/3 /3 12 of 25 Find the product of the complex numbers. Leave answer in polar form. z1 = 5(cos 20 + i sin 20) z2 = 4(cos 10 + i sin 10) z1 520 , z2 410 z1 z2 520 420 5* 4 20 20(cos 200 + i sin 200) 20(cos 30 + i sin 30) 10 2030 20 cos30 i sin 30 9(cos 30 + i sin 30) 9(-cos 200 - i sin 200) 20(-cos 200 - i sin 200) 13 of 25 Find the exact value by using a difference identity: sin 15 sin15 sin(45 30 ) sin 45 cos30 cos 45 sin 30 2 3 1 2 3 21 2 2 2 2 4 ^/2(^/3-1) 4 ^/2(^/3-1) 4 ^/2(^/3+1) 4 ^/2(^/3+1) 4 14 of 25 Use the given information to find the exact value of the expression: Find cos (2, ), csc = 5/3, lies n quadrant II. 1 5 3 csc sin sin 3 5 2 18 7 3 cos 2 1 2sin 1 2 * 1 25 25 5 2 7 25 24 25 7 25 24 25 15 of 25 Find another representation, (r, ), for the point under the given conditions. ( 6, ), r > 0 and 2 < < 4 3 3 2 ( 6, - 5 ) 7 7 and , then are coterminal. so 3 3 3 7 6, is the same as 3 6, 3 3 2 ( 6, - ) 3 4 ( 6, - ) 3 7 ( 6, ) 3 16 of 25 Find the solutions of the equation: 2 cos + 1 = 0 2cos 1 cos 1 2 is then in the 2nd and 3rd quadrants 1 2 With 0 to 2 , when in the 2nd quadrant, cos 1 2 3 2 4 1 When in the 3rd quadrant, 2 cos 1 2 3 3 2 Then the coterminal angles are: 2n , where n is integer. = 2/3 + n -or- = 4 /3 + n = 2 /3 + 2n -or- = 4 /3 + 2n = /2 + 2n -or- = 3/2 + 2n = 3/2 + n 17 of 25 Use the given information to find the exact value of the expression. Find cos (2), sin = 20/29, lies in quadrant I. 2 41 20 Using the double angle formula: cos 2 1 2sin 2 1 2 * 29 841 540 841 -41 841 39 841 41 841 18 of 25 Use a half-angle formula to find the exact value of the expression: 2 sin 22.5 22.5 45 22.5 is in the first quadrant, then its sine is > 0. sin 2 1 cos 1 cos 45 2 2 1 2 2 1 2 2 2 2 1 - ^/2+^/2 2 1 ^/2+^-/2 2 1 - ^/2-^/2 2 1 ^/2+^/2 2 19 of 25 Express the product as a sum or difference: sin 6x cos 2x 1 sin( A B) sin( A B) 2 1 1 sin 6 x cos 2 x sin(6 x 2 x) sin(6 x 2 x) sin8 x sin 4 x 2 2 sin A cos B 1/2(sin 8x + sin 4x) sin (cos 12x2) 1/2(sin 8x + cos 4x) 1/2(cos 8x - cos 4x) 20 of 25 Complete the identity: sin cos + cos sin sin cos sin 2 cos 2 1 1 sec csc cos sin cos sin cos sin sin tan sec csc 1 + cot -2 tan2 21 of 25 Solve the equation on the interval [0, 2]: ^/3 sin 4x = 2 Let u = 4x sin u 3 3 u sin 1 2n 2n 2 3 2 or 3 2 u sin 1 2n 2n 2n 2 3 3 When n = 0, u When n = 1, 3 or 2 u x or 3 4 12 6 u 3 2 7 u 7 x 3 4 12 or u 2 8 u 2 2 x 3 3 4 3 When n = 2 u 3 4 13 u 13 x 3 4 12 or u 2 14 u 7 4 x 3 3 4 6 When n = 3 u 3 3* 2 19 u 19 x 3 4 12 or u 2 20 u 5 3* 2 x 3 3 4 3 /4, 7/4 /12, /6, 2/3, 7/12, 7/6, 13/12, 5/3, 19/12 0 0, /4, 22 of 25 Complete the identity: cos ( + ) cos ( - ) = ? cos( ) cos cos sin sin cos( ) cos cos sin sin So cos( )cos( ) cos cos sin sin cos cos sin sin cos 2 cos 2 sin 2 sin 2 1 sin 2 cos 2 sin 2 sin 2 cos 2 sin 2 cos 2 sin 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos(2) cos(2) + sin(2) sin(2) 2 - sin2 - sin2 cos2 - sin2 cos2 - 2 sin 2 sin2 23 of 25 Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. B = 18 C = 113 b = 44 A= 180C = 180 Using the law of sine: a b sin A sin 49 ab 44 107.5 sin A sin B sin B sin18 c b sin C sin113 cb 44 131.1 sin C sin B sin B sin18 A = 49, a = 107.5, c = 131.1 A = 47, a = 131.1, c = 107.5 A = 47, a =133.1, c = 109.5 A = 49, a =109.5, c = 133.1 24 of 25 Two sides and an angle (SSA) of a triangle are given. Determine whether the given measurements produce one triangle, two triangles, or no trianagle at all. Solve each triangle that results. Round lengths to the nearest tenth and angle measure to the nearest degree. A = 30 a = 20 b = 40 Using law of sine: sin B sin A b 40 1 sin B sin A sin 30 2 * 1 B 90 b a a 20 2 Then C = 180 = 180 c b sin C sin 60 3 cb 40 40 * 34.6 sin C sin B sin B sin 90 2 B = 60, C = 90, c = 34.6 B = 60, C = 60, c = 34.6 B = 90, C = 60, c = 34.6 no triangle 25 of 25 Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. B = 29 C = 112 b = 35 A= 180C = 180 Using the law of sine: a b sin A sin 39 ab 35 45.4 sin A sin B sin B sin 29 c b sin C sin112 cb 35 66.9 sin C sin B sin B sin 29 A = 37, a = 68.9, c = 47.4 A = 37, a = 66.9, c = 45.4 A = 39, a = 45.4, c = 66.9 A = 39, a = 47.4, c = 68.9